نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانشیار، گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 استاد، پژوهشکده فناوری‌های شیمیایی، سازمان پژوهش‌های علمی و صنعتی ایران، تهران، ایران

چکیده

                                                                                                  DOR:98.1000/1735-0913.1397.33.531.65.4.32.1606
کاربردهای نانومواد تجدیدپذیر، مانند نانوالیاف سلولز(CNFs)، به دلیل خواص منحصر به فرد شامل: سطح ویژه بالا، ضریب لاغری بالا، زیست تخریپ‌پذیر، دسترسی آسان و گروه‌های هیدروکسیل واکنش‌پذیر موجود در سطح اخیراْ مورد توجه بسیاری قرارگرفته است. هدف از این پژوهش، ساخت فیلترهای نانویی تجدیدپذیر هوا با استفاده از CNFs اصلاح شده با فتالیمید می‌باشد. چون فتالیمید حاوی گروه‌های آمینی می‌باشد که برای جذب دی‌اکسید کربن لازم می‌باشد. در این تحقیق از روش خشک‌کن انجمادی برای حذف مستقیم آب از ژل CNFs خالص و اصلاح شده با فتالیمید استفاده شد همچنین خواص آئروژل‌های CNFsخالص و اصلاح شده با فتالیمید به منظور جذب دی اکسید کربن بررسی گردید. اصلاح CNFs با فتالیمید در اسید استیک با نسبت CNFs به فتالیمید 1: 0، 1: 0.5، 1: 1 و 1: 1.5درصد وزنی انجام شد. خصوصیات شیمیایی و مورفولوژیکی CNFs اصلاح شده با تکنیک‌های مختلفی شامل SEM، FTIR-ATR، XRD و TGA بررسی شد. بررسی انجام شده توسط SEM هیچ تغییری در ابعاد و ساختار CNFs اصلاح شده نشان نداد. حضور فتالیمید با ایجاد پیک‌های جدید NH2، C-N و استر (〖COO〗^-) بر روی CNFs اصلاح شده با استفاده از آزمون طیف سنجی ATR-FTIR تأیید شد. همچنین، نتایج TGA نشان داد که با افزایش مقدار فتالیمید، پایداری حرارتی کاهش می-یابد که نشان‌دهنده واکنش‌پذیری گروهای عاملی فتالیمید باCNFs است. به علاوه، بیشترین جذب دی اکسیدکربن مربوط به فتالیمید 1.5 درصد حدود 50 درصد بود

کلیدواژه‌ها

-Arbelaiz, A., Fernandez, B., Ramos, J. and Mondragon, I., 2006. Thermal and crystallization studies of short flax fiber reinforced polypropylene matrix composites: Effect of treatments. Thermochimica Acta, 440(2): 111–121.
-Ashori, A., Babaee, M., Jonoobi, M. and Hamzeh, Y., 2014. Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydrate polymers, 102(1): 369–375.
-Baker, R.W., 2004. Membranes and modules: 97-178. In: Wiley, J. (Eds.). Membrane Technology and Application. Wiley online Library, USA, 118p.
-Chen, L., Bromberg, L., Hatton, T.A. and Rutledge, G.C., 2007. Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer, 48(16): 4675–4682.
-Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M. and Hai, Y., 2011. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83(4): 1804–1811.
-Cherian, B.M., Leao, A.L., Souza, S.F., Costa, L.M.M., Olyveira, G.M. and Kottaisamy, M., 2011. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 86(4): 1790–1798.
-Chong, L., Po-Chun, H., Hyun-Wook, L., Meng, Y., Guangyuan, Z., Nian, L., Weiyang, L. and Yi, C., 2015. Transparent air filters for high-efficiency PM2.5 capture. Naturecommunications, 1(10): 1038–1045.
-Cooper, A., Oldinski, R., Ma, H., Bryers, J.D. and Zhang, M., 2013. Chitosan-based nanofibrous membranes for antibacterial filter applications. Carbohydrate Polymers, 92(1): 254–259.
-Cunha, A.G. and Gandini, A., 2010. Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose, 17(5): 875–889.
-Daneleviciute, A., Katunskis, J. and Buika, G., 2009. Electrospun PVA Nanofibres for Gas Filtration Applications. Fibers & Textiles in Eastern Europe, 6(77): 40–43.
-Daly, A. and Zannetti, P., 2007. An Introduction to Air Pollution–Definitions, Classifications, and History. Chapter 1 of ambient air pollution. In:  Zannetti, P., Al-Ajmi, D. and Al-Rashied, S., (Eds). The Arab School for Science and Technology (ASST) and the EnviroComp Institute. 358P.
-Ding, J., Zhang, M., Jiang, Z., Li, Y., Ma, J. and Zhao, J., 2012. Enhancing the permselectivity of pervaporation membrane by constructing the active layer through alternative self-assembly and spin-coating. Membrane Science, 390: 218–225.
-Dobreva, T., Benavente, R., Perena, J.M., Perez, E., Avella, M. and Garcia, M., 2010. Effect of different thermal treatments on the mechanical performance of poly (l-lactic acid) based eco-composites. Journal of Applied Polymer Science, 116(2): 1088–1098.
-Dong, Y., Wang, M., Chen, L. and Li, M., 2012. Preparation, characterization of P(VDF- HFP)/[bmim]BF4 ionic liquids hybrid membranes and their pervaporation performance for ethyl acetate recovery from water. Desalination, 295: 53–60.
-Doshi, J. and Reneker, D. H., 1995. Electrospinning process and applications of electrospun fibers. Electrostatics, 35(2-3): 151–160.
-Espino-Perez, E., Bras, J., Ducruet, V., Guinault, A., Dufresne, A. and Domenek, S., 2013. Influence Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly (lactide) based bionanocomposites. European Polymer, 49(10): 3144–3154.
-Gebald, C., Wurzbacher, J.A., Tingaut, P., Zimmermann, T. and Steinfeld, A., 2011. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environmental Science & Technology, 45(20): 9101–9108.
-Gousse, C., Chanzy, H., Cerrada, M.L. and Fleury, E., 2004. Surface silyation of cellulose microfibrils: preparation and rheological properties. Polymer, 45(5): 1569–1575.
-Habibi, Y., Chanzy, H. and Vignon, M.R., 2006. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose, 13(6): 679–687.
-Han, J., Zhou, C., Wu, Y., Liu, F. and Wu, Q., 2013. Self-Assembling Behavior of Cellulose      Nanoparticles during Freeze Drying: Effect of Suspension Concentration, Particle Size, Crystal, Structure, and Surface Charge. Biomacromolecules, 14(5): 1529−1540.
-Hemraz, U.D., Boluk, Y. and Sunasee, R., 2013. Amine-decorated nanocrystalline cellulose surface synthesis characterization, and surface properties. Canadian Journal of Chemistry, 91(10): 974–98.
-Katepalli, H., Bikshapathi, M., Sharma, C.S., Verma, N. and Sharma, A., 2011. Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications. Chemical Engineering, 171(3): 1194–1200.
-Kijenska, E., Prabhakaran, M.P., Swieszkowski, W., Kurzydlowski, K.J. and Ramakrishna, S., 2012. Electrospun bio-composite (PLLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering. J. Bio. J Biomed Mater Res B Appl Biomater. 100(4), 1093–1102.
-Klemm, D., Heublein, B. and Fink, H.P., 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22): 3358–3393.
-Kumar, A., Negi, Y.S., Choudhary, V. and Bhardwaj, N.K., 2014. Characterization of cellulose nanocrystals produced by acidhydrolysis from sugarcane bagasse as agro-waste. Materials Physics and Chemistry, 2(1): 1–8.
-Lam, E., Male, K.B., Chong, J.H., Leung, A.C.W. and Luong, J.H.T., 2012. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology, 30(5): 283–290.
-Lavoine, N., Desloges, I., Dufresne, A. and Bras, J., 2012. Microfibrillated cellulose, their barrier properties and applications in cellulosic materials: a review. Carbohydr, 90(2). 735–748.
-Li, N., Wang, H., Qu, X. and Chen, Y., 2017. Synthesis of poly (norbornene-methylamine), a biomimetic of chitosan, by ring-opening metathesis polymerization (ROMP). Marine Drugs, 15(7). 1–9.
-Liu, X., Souzandeh, H., Zheng, Y., Xie, Y., Zhong, W. H., & Wang, C. 2017. Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Composites Science and Technology, 138, 124-133.
-Marzbani, P., Resalati, H., Ghasemian, A. and Shakeri, A., 2016. Surface modification of talc particles with phthalimide: study of composite structure and consequences on physical, mechanical, and optical properties of deinked pulp. Bioresource, 11(4): 8720–8738.
-Nair, S.S., Zhu, J.Y., Deng Y. and Ragauskas, A.J., 2013. Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustainable Chemistry & Engineering, 2 (4): 772–780.
-Nazir, M.S, Wahjoedi, B.A., Yussof, A.W. and Abdullah, M.A., 2013. Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. Bioresources, 8(2): 2161–2172.
-Ngadi, N.N. and Lani, S., 2014. Extraction and characterization of cellulose from empty fruit bunch (EFB) fiber. Sciences & Engineering. Vol 68(5). 35–39. 
-Pasquini, D., Teixeria, E.D.M., Curvelo, A.A.D.S., Belgacem, M.N. and Dufresne, A., 2008. Surface esterification of cellulose fibres: processing and characterization of low-density polyethylene/ cellulose .Fibers composite. Composite Science and Technology, 68(1): 193– 201.
-Peng, Y., Dong, Y., Fan, H., Chen, P., Li, Z. and Jiang, Q., 2013. Preparation of polysulfone membranes via vapor-induced phase separation and simulation of direct-contact membrane distillation by measuring hydrophobic layer thickness. Desalination, 316: 53–66.
-Rosilo, H., Kontturi, E., Seitsonen, J., Kolehmainen, E. and Ikkala, O., 2013. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol−ene click chemistry. Biomacromolecules, 14 (5). 1547–1554.
-Saljoughi, E., Sadrzadeh, M. and Mohammadi, T., 2009. Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. Membrane Science, 326(2): 627–634.
-Segal, L., Creely, J., Martin, A. and Conrad, C., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research, 29. 786–794.
-Semba, T., Ito, A., Kitagawa, K., Nakatani, T., Yano, H. and Sato, A., 2014. Thermoplastic composites of polyamide-12 reinforced by cellulose nanofibers with cationic surface modification. Applied Polymer Science, 131. 40920–40928.
-Sivakumar, M., Mohan, D.R. and Rangarajan, R., 2006. Studies on cellulose acetate-polysulfone ultrafiltration membranes II. Effect of additive concentration. Membrane Science, 268(2). 208–219.
-Spence, K.L., Venditti, R.A., Rojas, O.J., Habibi, Y., and Pawlak, J.J., 2011. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 18(4). 1097–1013.
-Sun, R., Fang, J., Mott, M.L. and Bolton, J., 1999. Fractional isolation and characterization of polysaccharides from oil palm trunk and empty fruit bunch fibres. Holzforschung, 53(3): 253–260.
-Tian, C., Fu, S., Chen, J., Meng, Q. and Lucia L.A., 2014. Graft polymerization of epsilon-caprolactone to cellulose nanocrystals and optimization of grafting conditions utilizing a response surface methodology. Nordic Pulp & Paper Research Journal (NPPRJ), 29(1): 58–68.
-Wang, X.Q., Zhu, Q., Mahurin, S.M., Liang, C. and Dai, S., 2010. Preparation of free-standing high quality mesoporous carbon membranes. Carbon, 48(2). 557–570.
-Wei, L., McDonald, A.G., Freitag, C. and Morrell, J.J., 2013. Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polymer Degradation Stability, 98(7): 1348–1361.