Pulp and paper
Jafar Ebrahimpour Kasmani; Ahmad Samariha; Alireza Khakifirooz
Abstract
Background and objectives: Waste paper recycling has grown as an industry in Iran and the world and offers many benefits to the environment and humans. Municipal waste is also reused after recycling processes. Cardboard recycling industry has great environmental and economic importance and with the lack ...
Read More
Background and objectives: Waste paper recycling has grown as an industry in Iran and the world and offers many benefits to the environment and humans. Municipal waste is also reused after recycling processes. Cardboard recycling industry has great environmental and economic importance and with the lack of wood resources and high demand for paper products, it plays an important role in the development of paper-related industries. However, recycling can be associated with a reduction in the optical properties of the paper. The use of nanoparticles in the paper industry is also expanding day by day. Nanosilica is one of the most important nanoparticles used as a retention aid in the paper industry. In order to reduce the consumption of long fibers and obtain the desired optical properties, the use of nanosilica alone or in combination with other materials such as cationic starch and cationic polyacrylamide is investigated. The purpose of this research is to compare the effect of separate and combined use of nanosilica additives, cationic polyacrylamide, cationic starch and long fibers on the optical properties of white liner paper pulp.Methodology: In this study, white paper pulp with a brightness of at least 78% and a gloss of at least 45% was used to prepare handmade papers. Long fiber chemical paper pulp from coniferous kraft imported from Russia with a brightness of 89% was used in the laboratory. Nanosilica powder (NanoSiO2) produced by Degussa, Germany, cationic polyacrylamide with Farinret K325 brand, produced by Degussa, Germany, and cationic starch from LyckebyAmylex, Slovakia, were used. Independent treatments include the addition of 10% refined long fibers paper pulp, 6% nanosilica, 1.5% cationic starch and 0.15% cationicpolyacrylamide and combined treatments include 6% nanosilica and 1.5% cationic starch and 6% nanosilica and 0.15% cationic polyacrylamide. Then 127 g.m-2 handmade papers were prepared and their optical and microscopic properties were evaluated.Results: The results showed that by adding 10% of long fibers, the brightness decreased and by using 6% of nanosilica, the maximum brightness was obtained. Meanwhile, the whiteness of papers with 6% nanosilica was minimum and maximum with 0.15% cationic polyacrylamide. Opacity showed its highest value with the combination of 6% nanosilica and 0.15% cationic polyacrylamide. Also, by increasing the amount of polyacrylamide and cationic starch, individually or in combination with nanosilica, the opacity increased. The light absorption coefficient was the lowest in papers with 6% nanosilica and the light scattering coefficient was the highest in papers containing 6% nanosilica and 0.15% cationic polyacrylamide. A colorimeter was used to measure the color components and the results showed that the additives had an effect on the brightness and whiteness of the papers. Also, changes in the color spectrum and the amount of color change were also observed. Additives increased the darkness and changes in different colors.Conclusion: The use of nanosilica separately and in combination with starch and cationic polyacrylamide increases the brightness of papers. Also, the use of cationic polyacrylamide separately and in combination with nanosilica leads to an increase in the whiteness and opacity of papers. The brightness factor of the papers, which is representative of the L* component, decreased with the exception of the addition of 10% long fibers and 6% nanosilica. The amount of overall color change with ∆E* was the lowest in samples containing 1.5% cationic starch and the highest in samples containing 0.15% cationic polyacrylamide. The use of some treatments can lead to a decrease in the optical properties and a decrease in the printability quality of the white liner. To solve this problem, mechanical paper pulp that has been decolorized or coated on the surface of the paper can be used. The presence of nano-silica particles in the structure of the paper improves the bond surface and reduces the prosity, which results in the reduction of surface roughness and less light refraction, and increases the light reflection and brightness of the paper.
Pulp and paper
Jafar Ebrahimpour Kasmani; Ahmad Samariha; Alireza Khakifirooz
Abstract
This research was conducted with the aim of investigating the effect of two-layer coating of nano-polyurethane and nano-clay on the mechanical and physical properties of packaging cardboard with brown layer. For this purpose, brown layer cardboard with grammage of 127 was prepared and tested. To coat ...
Read More
This research was conducted with the aim of investigating the effect of two-layer coating of nano-polyurethane and nano-clay on the mechanical and physical properties of packaging cardboard with brown layer. For this purpose, brown layer cardboard with grammage of 127 was prepared and tested. To coat the surface of the cardboard, it was first coated with nano-polyurethane and sprayed by a coating nozzle. Then the surface of the brown layer cardboard was covered with nano-clay to improve the performance of the coating material of the first treatment. Nano-clay coating was performed by a laboratory coating machine called barcoter. The coated cardboards were restrained and dried in the room for one day to stabilize the coating material on their surface. Then the samples were placed inside the freezer for 2 and 4 months and their properties were measured. The results showed that coating reduced water absorption. In the coated and frozen samples, an increase in thickness, smoothness of the surface and a decrease in water absorption and resistance properties compared to non-frozen control samples have been observed. Double coated samples showed very few pores. The thickness, smoothness of the surface and resistance to tearing in the machine cross direction of the double coated brown cardboard showed an increase of 13.7%, 75% and 3.8%, respectively, compared to the control sample. water absorption, resistance to bursting, resistance to tearing in the machine direction, resistance to tensile in the machine direction, resistance to tensile in the cross machine direction, resistance to ring crush test in the machine direction and resistance to ring crush test in the cross machine direction of the double-coated brown layer cardboard compared to the control sample, showed 107.20, 1.5, 34.3, 25.4, 24.3, and 4.7 percent decrease respectively.
Jafar Ebrahimpour Kasmani; Ahmad Samariha; Alireza Khakifirooz
Abstract
This study aimed to investigate the use of cellulose nanofibers and starch-nano-cellulose and polyacrylamide-nano-cellulose hybrid systems for the replacement of imported long chemical fibers in the production of these papers. In this study, imported long fiber chemical pulp was added to cotton pulp ...
Read More
This study aimed to investigate the use of cellulose nanofibers and starch-nano-cellulose and polyacrylamide-nano-cellulose hybrid systems for the replacement of imported long chemical fibers in the production of these papers. In this study, imported long fiber chemical pulp was added to cotton pulp at 4 levels. Cellulose nanofibers were added to cotton pulp at a 5% level with 1% starch and 0.1% with polyacrylamide. Three levels of cationic starch and three levels of cationic polyacrylamide were also used. From each of the treatments, 60 gm-2 handsheet were made finally the physical, mechanical and optical properties of the paper made from different pulps were compared. The results showed that with increasing nanocellulose individually, compared to imported long fibers, surface smoothness, tensile strength, bursting, tearing of paper increased and air resistance, folding resistance and opacity decreased. Increasing nanocellulose in combination with cationic polyacrylamide increased the paper air resistance and surface area, tensile, burst, tear, and folding strength of the paper compared to imported long fibers, air resistance and opacity. With the increase of nanocellulose in combination with cationic starch, as compared to imported long fibers, surface smoothness, tensile strength, bursting, folding increased but opacity decreased. FE-SEM results also showed that with increasing percentage of cellulose nanofibers, the pores decreased significantly. As a result of the addition of 5% cellulose nanofibers the surface of the paper became smoother and the pores were filled relatively, confirming the results of surface smoothness and air resistance.