PANTEA OMRANI; Hamideh Abdolzadeh; Mohsen Abedi
Abstract
Fiber Reinforced Polymer (FRP) has become one of the most popular methods in the reinforced, repair and rehabilitation of structure due to its ease of application and the special physical characteristics. Both destructive and nondestructive assessments have been used to test the characteristics and durability ...
Read More
Fiber Reinforced Polymer (FRP) has become one of the most popular methods in the reinforced, repair and rehabilitation of structure due to its ease of application and the special physical characteristics. Both destructive and nondestructive assessments have been used to test the characteristics and durability of FRP in order to investigate the condition of the structure. The aim of this research was to investigate the structural performance of corner joint reinforced with fiber reinforced polymer (FRP) composite under diagonal tension load. Constructed joints from two wooden species of beech (Fagus orientalis) and fir (Abies alba), were reinforced with reinforced composites of one and two layer of carbon and glass fibers and then they were tested under diagonal tension load. The miter corner joints were made with wooden pin and polyvinyl acetate adhesive. The fibers lay-up was done manually. Epoxy resin was used as a polymeric matrix. Result of investigation indicated that use of beech wood in comparison with fir exhibited better results. In addition, glass fibers have shown better performance than carbon fiber as reinforcing agents. Inspection of diagonal tension specimens after failure have indicated that using of FRPs on the surfaces of L-shaped miter prevent joint opening, however, failure was occurred at the joint by increasing of load and vertical displacement and the general wood weakness in tension perpendicular to the grain and shear parallel to the grain at dowels site due to stress concentration. Also the results showed that the miter corner joint made with beech species and two layers of glass fibers had the highest stress carrying capacity.
Pantea Oimranin; Hamideh Abdolzadeh; Mohsen Abedi
Abstract
The aim of this study was investigation of the performance of mitered corner joints (L-shaped) reinforced by fibers reinforced polymer (FRP) at maximum stress area under diagonal compression loading. In This way, structural performance of constructed corner joints of two species of beech and fir reinforced ...
Read More
The aim of this study was investigation of the performance of mitered corner joints (L-shaped) reinforced by fibers reinforced polymer (FRP) at maximum stress area under diagonal compression loading. In This way, structural performance of constructed corner joints of two species of beech and fir reinforced by fiber reinforced polymer at polymeric matrix of epoxy with one and two layer of carbon and glass fibers and were investigated. After construction of the mitered joints with wooden dowel and polyvinyl acetate adhesive, the joints were reinforced with FRP composites and then were subjected to diagonal compression loading. Results have indicated that reinforcing layers prevent joint opening, however, failure was occurred at the joint by peeling fibers from wood surface or members fracture near the joints by stress concentration. The results of variance analysis showed that the independent effect of species of joint members and numbers of fibers layer were significant at 95% confidence level. The results showed that use of beech wood in comparison with fir wood, composites reinforced by carbon fibers compared to glass fibers, as well as the use of two layers of fiber compared to 1 layer of fibers, exhibited better performance in constructed joints. The joints made with beech wood and reinforced with 2 layers of composites reinforced by carbon fibers showed the best performance under diagonal compression loading.