Physics and Mechanical Wood
mohammad najafianashrafi; ali Heidari; Hamed Jafarzadeh
Abstract
Background and goal: walnut tree (Juglans regia L.) are cultivated in many countries in Asia, Europe and United States. This tree has high resistance with beautiful pattern and are used in furniture industry, building panels, flooring and covering. Iran are ranked third in the world in the production ...
Read More
Background and goal: walnut tree (Juglans regia L.) are cultivated in many countries in Asia, Europe and United States. This tree has high resistance with beautiful pattern and are used in furniture industry, building panels, flooring and covering. Iran are ranked third in the world in the production of walnut fruit after China and US. Thus, with considering high production of this tree in Iran and its diverse application in different industries, a comprehensive studding for physical and mechanical properties of this species in different regions of Iran seems necessary.Materials and methods: Walnut tree (Juglands regia L.) from two different regions, one from northeast (Mashhad) and the other from northwest (Maku) of Iran was selected for this study. Three trees from each region were selected randomly and cut with almost with the same diameter for physical and mechanical experiments. Samples also were cut from 2-4 meter from the ground. ISO 3129 and ASTM (D143-14) were used for doing physical and mechanical experiments respectively and at the humidity of 12%. Statistical analysis of data was performed using Graphpad prism version 8 and t-Test was performed for significant difference of data.Results: The average dry density of both Mashhad and Mako walnut wood was 0.625 and 0.579 g/cm3 respectively. There were a significant difference for both tangential shrinkage with values of 9.77 and 8.78 and volumetric shrinkage with measurement of 16.26 and 15.42 in Mashhad and Mako respectively. However, there was no significant difference for longitudinal and radial shrinkage in both walnut wood of the two regions. Walnut wood cut from Mashhad region showed higher physical and mechanical properties. The results of the mechanical characteristics of walnuts from two regions showed bending strength 100.54 and 87.61N/mm2 and elasticity modulus 10049.59 and 7504.21 N/ mm2 for Mashhad and Mako regions respectively which were significant. Results also showed not significant difference for compression parallel to the grain with values of 37.91 and 33.88N/mm2, for shear parallel to the grain with values of 9.15 and 8.95N/mm2, for Tensile strength parallel to the grain with 127.97 and 125.83 N/mm2, for Screw withdrawal strength in tangential values of 4031.01 and 3685.97N and Screw withdrawal strength in radial values of 4218.63 and 3915.03N and impact strength with the values of 27.81 and 25.24KJ/m2 for Mashhad and Maku regions respectively. Results also showed that the density of walnut wood in the two regions of Iran was similar to the those in Italy and eastern Europe but the mechanical properties of walnut tree such as bending strength and elasticity modules measured from Mashhad region was similar to the wone in turkey.Conclusion: The results showed that the physical and mechanical resistance of walnut wood located in Mashhad is higher than Maku wood, which was attributed to the higher dry density and the difference in weather conditions. Considering the appropriate mechanical resistance of walnut wood from both regions of Iran, this wood can be used in coating and furniture industries, building panels and flooring.
Physics and Mechanical Wood
Mohammad Najafian ashrafi; Mohammad Ghorbanian Far; Esmail Rastbod; Mohammad Salehi; Mahdi Shamshiri
Abstract
The walnut tree is one of the most important species in Europe, Asia and Iran, which is used in various industries such as furniture, veneer, and construction due to its high resistance and beauty. In this research, walnut trees from two different geographic locations, one from the forests in the north ...
Read More
The walnut tree is one of the most important species in Europe, Asia and Iran, which is used in various industries such as furniture, veneer, and construction due to its high resistance and beauty. In this research, walnut trees from two different geographic locations, one from the forests in the north of Iran (Noor) and the other in the west of Iran (Shahrkord), were selected. We studied physical properties including dry density, basic density, shrinkage, and mechanical properties including bending strength, modulus of elasticity, compression parallel to the grain, shear, tensile parallel and perpendicular to the grain, tangential and radial screw withdrawal strength and toughness. In this research, standards 3129 and ASTM D143-14 were used to perform physical and mechanical tests, respectively. The moisture content of all samples during mechanical tests was 12%. The average dry density of Noor and Shahrekord walnuts was 0.61 and 0.57 (g/cm3) respectively. The results of variance analysis showed that the characteristics and physical resistances of these two species were not significantly different except for dry density, radial, tangential and volumetric shrinkages. However, due to the higher density of Noor species, it showed higher mechanical resistance compared to the Shahrekord species.
Chemical conversion
mohammad najafianashrafi; Payam Moradpour; Ahmad Jahan latibari; Hamidreza Edalat
Abstract
Poly vinyl acetate (PVAC) adhesive is one of the most important adhesives in wood and furniture industry, which has many advantages such as low cost, environment friendliness and non-toxicity. However, it has some disadvantages such as low water resistance and poor boning strength. In this study, the ...
Read More
Poly vinyl acetate (PVAC) adhesive is one of the most important adhesives in wood and furniture industry, which has many advantages such as low cost, environment friendliness and non-toxicity. However, it has some disadvantages such as low water resistance and poor boning strength. In this study, the effect of nano silica (NS) on the properties of poly vinyl acetate adhesive was investigated. The adhesive formulation with different NS contents (2, 3 and 4%) was added to the PVAC. The structure of the prepared adhesive samples was studied by FT-IR and XRD. We used the wood of Acer tree (Acer cappadocicum) to make joints in this study. Two standards of D882 and ASTM D905 were used for tensile and shear tests, respectively. Results showed that adding NS to PVAC enhanced the tensile strength of films. For example, the tensile strength of prepared films was increased by 30% after adding 4% of NS. Moreover, shear strength test showed that NS up to 3% can improve PVAC bond strength. Viscosity results showed that increasing the weight of NS up to 3% to PVAC glue lead to an increase following a decrease in the viscosity