Composite wood products
Saeb Shabanpour; Noraldin Nazarnezhad; Maryam Ghorbani
Abstract
Current research was conducted to investigate the effect of nano Alumina modification on the mechanical and Surface properties of High-Density Fiberboard (HDF) made from oxidized fibers. Surface activation of fiber was done with 40% nitric acid. After fibers gluing with urea-formaldehyde (7% and 9% based ...
Read More
Current research was conducted to investigate the effect of nano Alumina modification on the mechanical and Surface properties of High-Density Fiberboard (HDF) made from oxidized fibers. Surface activation of fiber was done with 40% nitric acid. After fibers gluing with urea-formaldehyde (7% and 9% based on the dry weight of fibers), the boards were made by hot pressing. For veneering, two types of paper with grammage of 70 and 80 g/m2 impregnated with melamine-formaldehyde and nano-alumina 0, 1.5 and 3% were applied. According to the results, the highest bending strength, modulus of elasticity and hardness were measured in nitric acid-modified fibers/ 9% glue/ grammage of 80 g/m2/3% nano-alumina samples that was significant increase compared to the control boards a significant increase. The samples weight loss due to abrasion was decreased with increasing the veneers grammage and nano-alumina, which confirmed the positive effect of nano-alumina. Veneer grammage did not show significant effect on the resistance to cigarette burn, but the highest concentration of nano-alumina resulted to improve this surface resistance via increase of thermal conductivity.
Composite wood products
Maryam Ghorbani; null null; farhad fooladian
Abstract
The Use of agricultural plants wastes as an alternative forest resources in the cellulose industry can be recommended due to the severe shortage of wood raw material and restriction of forest harvesting. The aim of current research was to investigate the effect of thermal modification on applied properties ...
Read More
The Use of agricultural plants wastes as an alternative forest resources in the cellulose industry can be recommended due to the severe shortage of wood raw material and restriction of forest harvesting. The aim of current research was to investigate the effect of thermal modification on applied properties of composite made from sunflower stem flour-polypropylene. Thermal modification of sunflower stems was done at temperatures of 160, 180 and 200°C for 30 minutes and mixed with polypropylene in ratio of 30wt%. Test samples were prepared with maleic anhydride-grafted polypropylene as coupling agent by injection molding method. FTIR spectroscopy of sunflower stem flour confirmed the chemically changes due to thermal modification. More integration and uniform distribution, and less cavities were observed in the scanning electron micrographs of failure surface. The removal of hemicellulose of sunflower stem flour improved the thermal stability of composite, which thermal gravimetric analyzer (TGA) confirmed it with increasing in modification temperature up to 180°C. Modification at 200°C decreased thermal stability compared to other temperatures. Thermal modification leads to significant decrease in water absorption and improvement in bending and tensile properties due to hemicellulose degradation, increasing the crystallinity, loss of polarity, increased compatibility between the two phases of composite and uniform distribution of fillers in polymeric matrix. Notched impact strength of modified composites decreased due to better adhesion between lignocellulosic filler and polymer that facilitate the crack development along the interface.
Management and Economics wood
Elham Hatamzadeh Arabi; Maryam Ghorbani; Prya Biparva
Abstract
The current research work was planned to investigate the possibility of zinc oxide nanoparticles synthesis using hydrothermal method in wood structure and its effect on mechanical and biological properties of wood-polymer composite. Test samples were divided to control and treated with styrene, zinc ...
Read More
The current research work was planned to investigate the possibility of zinc oxide nanoparticles synthesis using hydrothermal method in wood structure and its effect on mechanical and biological properties of wood-polymer composite. Test samples were divided to control and treated with styrene, zinc oxide nanoparticles, nanocomposite and nano/Styrene. Mechanical and biological tests samples according toASTM-D143 and EN113 respectively were treated by vacuum- pressure method using cylinder experimental. The mechanical tests were considered for each level 5 repeat and for biological test for each level 10 repeat. The presence of zinc oxide nanoparticles on cell wall and styrene in the cell cavities were confirmed by Scanning electron microscopy. According to the results, bending strength, bending modulus, hardness and pressure parallel to grain for nano/styrene samples with highest improvement were increased 36.74, 40.23, 60.58 and 25.07 in comparison with control respectively. Also, decay resistance of treated samples increased, so that maximum and least weight loss were recorded for control and nano/styrene samples with 25.81 and 3.37% weight loss.
Management and Economics wood
Neda Esmaeili; Maryam Ghorbani; Porya Biparva
Abstract
In this study, the mechanical and biological properties of modified poplar wood with glutaraldehyde and paraffin were investigated. Modification was performed with glutaraldehyde at different concentrations of glutaraldehyde, 5, 10 and 20% using magnesium chloride as a catalyst and then subsequently ...
Read More
In this study, the mechanical and biological properties of modified poplar wood with glutaraldehyde and paraffin were investigated. Modification was performed with glutaraldehyde at different concentrations of glutaraldehyde, 5, 10 and 20% using magnesium chloride as a catalyst and then subsequently with paraffin by vacuum-pressure method. Increasing concentration of glutaraldehyde caused to weight gain and bulking wood cell wall, subsequently reduced paraffin penetration into the porous structure of wood. Biological resistance exposed to white rot fungi and mechanical properties were measured according to the standards EN113 and ASTM D143-94, respectively. Scanning electron microscopic images showed bulking of cell walls and paraffin presence in cell cavities. According to results of TGA, increasing of modification intensity decreased mass loss due to cross linking formation between glutaraldehyde and cell wall polymers. Paraffin at combined modification containing 10% and 20% glutaraldehyde improved significantly the modulus of elasticity. Glutaraldehyde reduced bending strength, but paraffin present in the modified samples improved it. The Glutaraldehyde increased compression strength parallel to grain and hardness that the improvement was more obvious in combined modification. Modification with glutaraldehyde enhanced decay resistance exposed to white rot fungi, and this improvement intensified at the presence of paraffin. Inhibitory influence of chemical modification on wood attacking white rot fungi can be attributed to decreases the wood moisture, bulking of cell walls and blocking cell cavities.
Management and Economics wood
Farvahl Sobhani Oskouie; Maryam Ghorbani; Saeid mojtaba Amini nasab
Abstract
The objectives of this research determine for optimum condition modification with effect of 3-(trimethoxysilyl) propyl methacrylate on physical properties of Poplar wood-polymer were performed. Test samples from Poplar species were divided to five levels: control, Acidified Ethanol/Silan/110 ˚C, Acidified ...
Read More
The objectives of this research determine for optimum condition modification with effect of 3-(trimethoxysilyl) propyl methacrylate on physical properties of Poplar wood-polymer were performed. Test samples from Poplar species were divided to five levels: control, Acidified Ethanol/Silan/110 ˚C, Acidified Ethanol/Silan/150 ˚C, Ethanol / Silan / 150°C and Silan/150°C in two levels with and without Benzoyl peroxide. Samples were impregnated with silan compound according to vacuum-pressure method in experimental cylinder. Weight percent gain of Silan/Et/BP/150 ˚C level by 24/40% had the maximum value were determined. Bulking efficiency and OH groups substituted in Silan/AEt/150 level with 6.81 % and 1.10 mol/gr, respectively compared with the other levels.Modification were resulted to improve water absorption and dimensional stability that maximum dimensional stability in contain initiator level were determined. In immersion-dry period test, the highest and lowest bulking efficiency in Silan/AEt/150 and Silan/Et/150 were reported. Maximum of weight loss in immersion-dry test was determined in Silan/AEt/110 with the 3.6% value.Key words: physical properties, 3-(trimethoxysilyl) propyl methacrylate, Asidified Ethanol, bulking efficiency
Management and Economics wood
Neda Esmaeeli; Maryam Ghorbani; pourya biparva
Abstract
This research was conducted to determine the optimal conditions for chemical modification of poplar wood with glutaraldehyde and its effect on the physical properties of products. Test samples were prepared according to the standard ASTM-D1037 and impregnated in the laboratory cylinders with Glutaraldehyde ...
Read More
This research was conducted to determine the optimal conditions for chemical modification of poplar wood with glutaraldehyde and its effect on the physical properties of products. Test samples were prepared according to the standard ASTM-D1037 and impregnated in the laboratory cylinders with Glutaraldehyde at a concentration of 10% by using vacuum-pressure method. Modification reaction was done in two procedure. Heating first in the laboratory cylinder (Hydrothermal) for 4 hour and second in oven for 4 level 4,12,24,48 and 48hours. Weight percent gain of modified by hydrothermal and oven method was measured 2.10, 9.26, 10.02, 11.40 and 14.15% respectively. Chemical modification with glutaraldehyde by hydroxyl group's substitution, reduced the uptake of water and swelling of poplar wood. So that at the end of soaking in water the heating in the oven for 48 hours with minimum water absorption and dimensional changes in the 57.32 and 12.08 respectively, and highest bulking, ASE and ASE′ in 8.31,67 and 35.51% respectively was selected as the optimal level. This improvement compared to other modification levels demonstrates the forming of permanent Cross-linking of acetal that increased by Prolongation of the heating time.
Composite wood products
ghasem asadpour; seyyed majid zabihzadeh; Maryam Ghorbani; mahmoud davoudi
Abstract
Current research was conducted to investigate the effect of thermal modification on practical properties of horn beam bark flour-polypropylene composites. Wood plastic composites were divided in two levels of control and thermal modification, both levels included of 4 groups in bark fillers; 10, 20, ...
Read More
Current research was conducted to investigate the effect of thermal modification on practical properties of horn beam bark flour-polypropylene composites. Wood plastic composites were divided in two levels of control and thermal modification, both levels included of 4 groups in bark fillers; 10, 20, 30 and 40%. Test samples prepared with maleic anhydride-grafted polypropylene as coupling agent by injection molding method. According to the results, bark flour increased water absorption, tensile and bending modulus. High proportion of bark fillers declined mechanical strength. Thermal modification significantly improved physical and mechanical properties of composite. Using lignocellulosic material flour bark hornbeam, tensile modulus and flexural modulus of composite material background had the highest improvement. In comparison between mechanical properties, impact resistance by adding flour bark had the greatest decrease. Thermal modification by increasing the crystallity, hemicellulose degradation, loss of polarity, increased compatibility between the two phases and uniform distribution of bark fillers in polymers, increased mechanical resistance.
Management and Economics wood
Elham Hatamzadeh; Maryam Ghorbani; Poria bi parva
Abstract
In this research, effect of the alkaline precursors of soda and ammonia as reagent deposition of zinc oxide nanoparticles using hydrothermal method in structure and physical properties of poplar wood were investigated. The samples of physical test were prepared with dimensions of 2*2*2 cm3 according ...
Read More
In this research, effect of the alkaline precursors of soda and ammonia as reagent deposition of zinc oxide nanoparticles using hydrothermal method in structure and physical properties of poplar wood were investigated. The samples of physical test were prepared with dimensions of 2*2*2 cm3 according to ASTM-D4446-05, and divided to three levels; control, Zncl2/NH3 and Zncl2/Naoh at 0.05M concentration and pH=10. Test samples were impregnated with salty precursor in the experimental cylinder using vacuum-pressure method, and in order to adjust the pH, soda and ammonia added. Due to the electron microscope images, change the type of precursor deposition, caused the different structure of ZnO nanoparticle. Retention of zinc oxide nanoparticles, density changes, water absorption, swelling and anti-swelling efficiency (ASE) were determined after synthesis. Retention of zinc chloride precursor with ammonia and soda acidity regulator was determined 4.43 and 1.71kg/m3 respectively. Water absorption increased at first hours of immersion, and then decreased. These treatments increased water absorption of wood. Least swelling and water absorption, and maximum ASE were measured in Zncl2/NH3 level.
Management and Economics wood
Azadeh Nikkhah Shahmirzadi; Maryam Ghorbani; Seyed Mojtaba Amininsab
Abstract
This research was conducted to investigate the effect of modification with maleic anhydride and methyl methacrylate on mechanical properties and decay resistance of poplar wood. Samples of mechanical and biological resistance tests were prepared according to ASTM D143-94 and EN113 standards. Treatment ...
Read More
This research was conducted to investigate the effect of modification with maleic anhydride and methyl methacrylate on mechanical properties and decay resistance of poplar wood. Samples of mechanical and biological resistance tests were prepared according to ASTM D143-94 and EN113 standards. Treatment levels were divided into 4 groups; control, methyl methacrylate, maleic anhydride and combined of maleic anhydride/ methyl methacrylate. Samples were impregnated with maleic anhydride and monomer using vacuum- pressure method with experimental cylinder. Maleic anhydride treated samples were heated in oven for 4 and 24 hours at 150 and 103ºC. For polymerization, methyl methacrylate monomer treated samples were heated in oven at 90ºC for 24 hours, consequently at 103ºC for the same time. Methyl methacrylate polymer coating formed on the cell wall, causing 22.57% improvement in the lateral stability under pressure parallel to grain. Highest value in modules of rupture, elasticity and hardness were measured in combined level with 24.13, 47.13 and 45.53% improvement compared with the control, respectively. Maleic anhydride in the presence of methyl methacrylate, with decreasing polarity of the wood and create a good distribution of the particle and the polymer, resulting in the cross linking formation and transmission of uniform tension that would lead to improved mechanical properties. Also, decay resistance was improved in all levels of modification, so that weight loss declined from 80.4% in control to 4.29% in combined level. Modified with maleic anhydride because of the wood composition change, reduction in moisture absorption ability of cell wall and bulking effect, and the presence of methyl methacrylate in the cell cavities as a physical barrier to the movement of fungi mycelium and moisture, were leading to improved decay resistance.
Sarveh Hosseinzadeh; Maryam Ghorbani; Porya Biprva
Abstract
This research was conducted to determine the physical properties of poplar wood treated with silica colloidal nanoparticles prepared from rice husk using ash making and alkaline digestion. Test samples were prepared according to ASTM-D1037 standard with the dimension of 2×2×2 cm and then ...
Read More
This research was conducted to determine the physical properties of poplar wood treated with silica colloidal nanoparticles prepared from rice husk using ash making and alkaline digestion. Test samples were prepared according to ASTM-D1037 standard with the dimension of 2×2×2 cm and then were impregnated ina cylinder according to Bethell method applying five concentration levels of soluble colloidal silica nanoparticles (0, 1.2, 1.7, 2.2 and 3.2%). Nanoparticle retention and absorption, density changes, water absorption, and anti-swelling efficiency (ASE) were determined. Nano silica absorption was determined as 119.8, 169.5, 196.3 and 214.7 % corresponding to 1.2, 1.7, 2.2 and 3.2 % nanoparticle addition, respectively. Nano-silica retention in the lowest and the highest treatment level were 1.2 and 9.3%. Results showed that the density increased from 0.37g/cm³ in control samples to 0.40 g/cm³ at the highest level of nano-silica absorption. Water absorption increased by increasing nano-silica absorption. However, dimensional stability of impregnated samples increased. After the longest immersion time, average swelling volume of the sample impregnated with nano-silica was decreased in comparison with the control sample. With increasing nano-silica absorption, anti-swelling efficiency of impregnated samples treated at the 1.2, 1.7, 2.2 and 3.2 % level and immersed for 168h was 36.5, 42.9, 34.7 and 26.8 %, respectively.
Fatemeh Bvanaghi; Maryam Ghorbani; Abolfazl Kargarfard
Abstract
Effects of acetylation and press time on heat transfer to the core layer of particleboard mat in hot pressing were investigated. Particleboard was made using hornbeam particles. Particles were soaked in acetic anhydride for 24 hours to reach three degrees of acetylation (8, 12 and 17%). The treated particles ...
Read More
Effects of acetylation and press time on heat transfer to the core layer of particleboard mat in hot pressing were investigated. Particleboard was made using hornbeam particles. Particles were soaked in acetic anhydride for 24 hours to reach three degrees of acetylation (8, 12 and 17%). The treated particles were heated by oven at 120°C for 40, 180 and 360 minutes, respectively. Acetylated and non-treated (control) particle were blended with 10% melamine urea formaldehyde (based on the oven-dry weight of particles) and and then pressed to make boards. During pressing operation of particle mat, heat transfer to the middle layer of the mat was measured by a Cr- Ni wires thermocouple. Three press times (5, 6 and 7 minutes) were used in the manufacturing process. Results showed that increasing the degrees of acetylation, heat transfer decreased. In control samples and in low-degree modification (8%), in the early period, core temperature reached 100°C. At 12%, after 390 seconds and at the highest degree (17%) even in the longer press time (7min), the core layer temperature did not reach to 100°C.