Composite wood products
Javad Torkaman; rouzbeh asadi khansari
Abstract
Fibre-gypsum board is a composite, in which fiber used as the reinforcement in the matrix of gypsum. The purpose of this article is to investigate the effect of different amounts of waste paper fibers on the strength, resistance and the fracture behavior of fiber-gypsum board. For this purpose, amounts ...
Read More
Fibre-gypsum board is a composite, in which fiber used as the reinforcement in the matrix of gypsum. The purpose of this article is to investigate the effect of different amounts of waste paper fibers on the strength, resistance and the fracture behavior of fiber-gypsum board. For this purpose, amounts of zero, 5, 10, 15, 20, 25 and 35 percent of waste paper fibers have been used. The results of measuring bending strength, internal bonding and moisture absorption during one month exposure to 100% relative humidity show that increasing the percentage of fibers up to 20% has increased the mechanical properties. In general, By using twenty percent fibers the bending strength increased fifty percent and the internal bonding became double and half in comparison to the control samples. The load-displacement curve shows that an increase of 5 to 15 percent of fibers does not change the fracture behavior of the fiber-gypsum board and they had brittle fracture same as control samples. While in more substitution values, the flexibility increases and the failure becomes ductile. Therefore, the best conditions in terms of strength, resistance, and flexibility have been obtained in 20% replacement of gypsum with waste paper fibers.
Yashar Einollahi; Amir Hooman Hemmasi; Habibollah Khademi Eslam; Esmaeil Ghasemi; Mohammad Talaei poor
Abstract
Considering the increase of environmental pollutant resulted from agglomerating rubbish and wastes containing stable petroleum-based polymers, substitution of these polymers with bio-polymers and solving their problems and defects in the production process as well as the final products is an important ...
Read More
Considering the increase of environmental pollutant resulted from agglomerating rubbish and wastes containing stable petroleum-based polymers, substitution of these polymers with bio-polymers and solving their problems and defects in the production process as well as the final products is an important topic. In this study, the possibility of the production of poly lactic acid (PLA)-rice husk composite with acceptable properties, and also the effect of using flame retardant mineral fillers of aluminum three hydrates (ATH) and magnesium di-hydroxide (MDH) on physical and thermal properties of the produced composite were investigated. Results indicated that the density of PLA-rice husk composite was higher than petroleum-based polymers composites (PP/HDPE-rice husk composites); and flame retardant mineral fillers addition led to an increase in the composite density. Also, flame retardant mineral fillers addition decreased the composite water absorption and thickness swelling, in a way that they were comparable with petroleum-based polymers composites. Results of thermal gravimetric analysis (TGA) showed that flame retardant mineral fillers addition also decreased the temperature of the composite weight loss curve peaks, and the weight loss rate toward temperature rising.
Composite wood products
Amir Nourbakhsh
Abstract
In this research was to use the effects micro cellulose, and Multi walled Carbon Nanotube on the mechanical properties of wood plastics composites. This article presents the application of Multi walled Carbon Nanotube in order to evaluate and compare their suitability as reinforcement for thermoplastics. ...
Read More
In this research was to use the effects micro cellulose, and Multi walled Carbon Nanotube on the mechanical properties of wood plastics composites. This article presents the application of Multi walled Carbon Nanotube in order to evaluate and compare their suitability as reinforcement for thermoplastics. The effects of loading micro cellulose and Multi walled Carbon Nanotube content on the mechanical properties were also studied. The results showed that mechanical properties of the composites made with 50 micron cellulose and 1.5 and 2.5 % of Multi walled Carbon Nanotube were significantly superior to those of the lower length (20 micron) and control samples. Addition of Multi walled Carbon Nanotube could enhance the mechanical properties of the blends, due to the improvement of interface bond between the filler and matrix of wood plastics composites. The significant improvements in mechanical properties of the blends composites made with Multi walled Carbon Nanotube and micro cellulose were further supported by SEM and TEM micrographs.
Composite wood products
Fardad Golbabaei; Amir Nourbakhsh; Abolfazl Kargarfard; Reza Hajihassani
Abstract
In this study, the reinforcing effect of recycled newsprint paper (RNP) in cement boards has been investigated. The experiment was designed to apply two variable factors, RNP and calcium chloride (CaCl2). Cement-fiber boards with the density of 0.7 kg/m3 were manufactured using fiber/cement ratios of ...
Read More
In this study, the reinforcing effect of recycled newsprint paper (RNP) in cement boards has been investigated. The experiment was designed to apply two variable factors, RNP and calcium chloride (CaCl2). Cement-fiber boards with the density of 0.7 kg/m3 were manufactured using fiber/cement ratios of 10:90, 15:85, 20:80 and 25:75 (w/w) and 3% and 5% CaCl2 as accelerator. Minimum four boards (replications) were fabricated for each combination of variables, and the mechanical and physical properties of the boards were evaluated. The statistical analysis showed that the effect of the RNP and CaCl2 contents on modulus of rupture of cement fiber boards were significant at 1% significant level. The results showed that addition of CaCl2 enhanced the mechanical properties of the boards. All properties of the boards were improved as the CaCl2 content was increased from 3% to 5%. The modulus of rupture and modulus of elasticity of the boards decreased with addition of RNP, and the maximum values were obtained at RNP loading of 10%. The results also showed that as the fiber content was increased, significant increase in water absorption and thickness swelling occurred. Increasing RNP fiber content from 10% to 25% reduced both the mechanical and physical properties considerably. The optimum condition was obtained when the RNP and CaCl2 contents were 10% and 5%, respectively.
Composite wood products
Hamid Ibaghi esfahani; Mehdi Kalagar; Hossein Sepehridad
Abstract
To study the tensile properties and impact strength in Wood Plastic Composites (WPC) polypropylene as a matrix and teada pine sawdust as reinforcement / filler is used. Ethylene / propylene / Diane / monomer (EPDM) as modified impact resistance with 10, 20 and 30 percent improved impact resistance and ...
Read More
To study the tensile properties and impact strength in Wood Plastic Composites (WPC) polypropylene as a matrix and teada pine sawdust as reinforcement / filler is used. Ethylene / propylene / Diane / monomer (EPDM) as modified impact resistance with 10, 20 and 30 percent improved impact resistance and maleic anhydride grafted polypropylene (MAPP) at a rate of 3 percent as a fasteners to improve response and polymers and fillers were added to the composite. To evaluate the fracture surface of a structure scanning electron microscope (SEM) was used. The apply of 10 % elastomer and 3 % coupling agent cause to improved of tensile properties and the use of higher levels of elastomer (20 and 30 %) has shown a decreasing trend in these properties. The results showed that PP matrix by adding sawdust to a significant reduction in impact strength of composite than pure PP is observed. An EPDM additive used in all contents of composites PP / sawdust has improved impact strength. Simultaneous use of EPDM and MAPP used a positive effect in tensile properties and impact strength. The apply of EPDM (30%) and 3% (MAPP) has demonstrated the highest level of impact strength. SEM images show that the use of EPDM and MAPP composites will improve the connection of interface.
Composite wood products
Ahmad Jahan- Latibari; Roozbeh Abidnejad; Mehran Roohnia
Abstract
At this research, the influence of Multi Walled Carbon Nano Tubes (Non-functionalized and functionalized) on mechanical properties of polypropylene – old corrugated container (OCC) fibers composites was investigated. OCC fibers polypropylene composites were prepared using 20% OCC fibers, 80% polypropylene ...
Read More
At this research, the influence of Multi Walled Carbon Nano Tubes (Non-functionalized and functionalized) on mechanical properties of polypropylene – old corrugated container (OCC) fibers composites was investigated. OCC fibers polypropylene composites were prepared using 20% OCC fibers, 80% polypropylene and 3% MAPP. Three levels of multi walled carbon nano tubes (0% - 0.5% - 1%) were added. Acidic oxidation method was used to functionalize the MWCNTs. Mechanical properties were measured as defined in ASTM testing methods. The results indicated that at higher dosage of MWCNTs, the tensile strength properties of the composite were improved but the influence of the functionalizing was not statisitaclly significant. The bending strength and elasticity as wellas the izod impact were increased as the higher amount of nanotubes were added to the composite. Scanning Electron Microscopes showed the development of bonding between the composite components. Compostes without coupling agent showed lower bonding strength between polypropylene and fiber as indicated by fiber pull out. However, in the composites containing coupling agent, the fiber fracture was observed.
Composite wood products
mowhammad madadi; Amir Nourbakhsh
Abstract
AbstractIn this research, utilization of ZnO nanoparticles and eggshell powder on physical and mechanical properties of polypropylene/wood flour composite were investigated. For this purpose, wood flour and polypropylene was mixed at 60 to 40% by weight. Eggshell powder at three levels (0, 5 and 10) ...
Read More
AbstractIn this research, utilization of ZnO nanoparticles and eggshell powder on physical and mechanical properties of polypropylene/wood flour composite were investigated. For this purpose, wood flour and polypropylene was mixed at 60 to 40% by weight. Eggshell powder at three levels (0, 5 and 10) percent and nano ZnO at four levels (0, 1.5, 3 and 5) percent were considered as variable factors. Physical and mechanical properties including water absorption and thickness swelling after 2 and 24 hours immersion in water, flexural strength were measured in accordance with DIN-EN 310-2006 standard, and tensile strength were measured in accordance with ASTM D1037 standard. Scanning electron microscope (SEM) were performed to interpret the results. The results were statistically analyzed using factorial experimental under completely randomized block design and the averages were compared using DMRT. Results showed that increasing the mixing ratio of eggshell powder to wood flour decrease mechanical strengths but were improved in water absorption and thickness swelling after 2 and 24 hrs. Using 1.5% nano zno increased the strength properties to the maximum values and improved physical properties.
Composite wood products
Alireza Beiazyat; Laya Jamalirad; Hedayat alah Aminian; Sahab Hejazi
Abstract
In this research, the effect of the wood filler content and coupling agent (MAPP) on the physical and mechanical properties of Polypropylene reinforced with palm wood flour from the annual pruning of palm leaves (Shahani species) composite, were studied. For this purpose, the palm wood flour in three ...
Read More
In this research, the effect of the wood filler content and coupling agent (MAPP) on the physical and mechanical properties of Polypropylene reinforced with palm wood flour from the annual pruning of palm leaves (Shahani species) composite, were studied. For this purpose, the palm wood flour in three levels of 30%, 40%, 50% and two levels of Maleic anhydride grafted polypropylene 4% and 6% were used as variable factors. Then, the Physical and mechanical properties of samples, including thickness swelling after 2 and 24 hours of immersion in water, bending strength, bending modulus, tensile strength, tensile modulus and impact strength, were measured.The results showed that by increasing palm wood flour, the bending strength, tensile strength and impact strength were decreased but the thickness swelling, bending modulus, tensile modulus were increased. It was also found that by adding MAPP, thickness swelling, bending strength, bending modulus, tensile strength and tensile modulus were improved. The results revealed that at increased consumption of palm wood flour and adding coupling agent leads to improve quality of the interface and significant changes especially dimensional stability and MOE, are achieved.
Composite wood products
Habib alah Khademieslam; Mehdei Kalagar
Abstract
In this investigation, tensile and physical properties of polypropylene (as matrix)/wheat straw fiber/paper mill sludge (as filler) composites was studied. The ratio of wheat straw fiber/ paper mill sludge was selected as 40/0, 30/10, 20/20, 10/30 and 0/40 (w/w) were used. Also, for better ...
Read More
In this investigation, tensile and physical properties of polypropylene (as matrix)/wheat straw fiber/paper mill sludge (as filler) composites was studied. The ratio of wheat straw fiber/ paper mill sludge was selected as 40/0, 30/10, 20/20, 10/30 and 0/40 (w/w) were used. Also, for better compatibility between the two phases 3% MAPP as coupling agent was used. Mixing process was done in twin screw internal mixer extruder, and then composite samples were manufactured by injection molding. Result indicated that the tensile modulus of elasticity improved with increasing fillers and also it was observed that the toughness of composite increased when compared to the pure PP, while due to the usage of more paper sludge, these properties was improved. Tensile strength of composite decreased with adding 40% wheat straw fiber, but with addition of sludge tensile strength increased significantly. Adding wheat straw in PP matrix and its hydrophilic properties resulted in the highest rates of water absorption and thickness swelling. However, adding paper sludge and lower amount of lignocellulosic material, and the compatibilizer noticeably decreased the physical properties due to better bonding between two phases.
Composite wood products
Alireza Sokhtesaraei; Sahab Hejazi; Laya Jamalirad; Mohammad Ahmadi; Sead behnam Hosseini
Abstract
In this study, the physical and mechanical properties of polypropylene composites reinforced with alkaline sulfite-anthraquinone, soda-anthraquinone and monoethanolamine-anthraquinone and chemical mechanical produced from non-extrated and pre-extracted bagasse with hot water were studied. MAPP coupling ...
Read More
In this study, the physical and mechanical properties of polypropylene composites reinforced with alkaline sulfite-anthraquinone, soda-anthraquinone and monoethanolamine-anthraquinone and chemical mechanical produced from non-extrated and pre-extracted bagasse with hot water were studied. MAPP coupling agent (3%) was added and the performance of pretreated and unpretreated bagasse composites were compared. The ratio of the polypropylene and reinforcement material (pulp) was considered at 50/ 50 (w/w). The results showed that the pulping process has a significant effect on all physical and mechanical properties of produced composites. In general, composites containing chemical pulps showed greater dimensional stability and mechanical strengths but lower water absorption than that of mechanical pulp. Composites containing treated fibers with alkaline sulfite-anthraquinone and soda pulp had the highest mechanical properties and dimensional stability. Composites made from fibers in which hemicelluloses were extracted and then were treated with chemical pulping processes had the highest mechanical strength and dimensional stability among all of samples. The highest mechanical strengths and dimensional stability were observed in composites which were reinforced with treated fibers compared with control samples containing untreated bagasse fibers. In general, the results showed the superior physical and mechanical characteristics for pulp - plastic composites compared with wood flour plastic composites.
Composite wood products
Amir Norbakhsh; Abolfazl Kargarfard
Abstract
In this research the impact of micro cellulose particles length, and coupling agent (MAPP) on the mechanical and thermal properties of Nano/ wood plastics composites were investigated. The results showed that mechanical properties of the composites made with 50 micron micro cellulose particles and 5 ...
Read More
In this research the impact of micro cellulose particles length, and coupling agent (MAPP) on the mechanical and thermal properties of Nano/ wood plastics composites were investigated. The results showed that mechanical properties of the composites made with 50 micron micro cellulose particles and 5 % of MAPP were significantly different to those of the lower length (20 micron) and 2.5% of MAPP. Addition of MAPP enhanced the mechanical and thermal properties of the blends, due to the improvement of interface bond between the filler and matrix of Nano/ wood plastics composites. The significant improvements in mechanical properties of the blended composites made with MAPP and NC were further supported by SEM and TEM micrographs. Nano/ clay particles distribution and thermo gravimetric analysis (TGA) indicated that the addition of 5% MAPP and the longer micro cellulose particles remarkably increased the thermal stability of the blends compared to other treatments of Nano/ wood plastics composites.
Composite wood products
Seyedeh Zahra Hosseini; Ali akbar Enayati
Abstract
This study has been undertaken to investigate effects of synthetic waste fibers of polyester in improving mechanical properties of wood plastic composites. Two types of polyester fibers (carpet fibers and polish fibers), high density polyethylene along with 40 wt% wood flour of populus, 2 wt% of maleic ...
Read More
This study has been undertaken to investigate effects of synthetic waste fibers of polyester in improving mechanical properties of wood plastic composites. Two types of polyester fibers (carpet fibers and polish fibers), high density polyethylene along with 40 wt% wood flour of populus, 2 wt% of maleic anhydride grafted polyethylene (MAPE) and ethylene- glycidyl methacrylate copolymer (E-GMA) as coupling agent were used. After two-stage mixing, resulted granules were hot pressed (at160℃, under 10 Mpa pressures) to produce test boards measuring 20×20×0.7 cm in dimensions. Results from measurement of mechanical properties of the samples have shown that with increasing the amount of polyester fibers (carpet fibers and polish fibers), tensile modulus of elasticity of wood plastic composites decreases and increases his flexural modulus of elasticity. Also by increasing amount carpet fibers, the tensile, flexural strengths of wood plastic composites-carpet fibers increases and the maximum of flexural strength is in a sample that contained 20 wt% carpet fibers. But about the plush fiber, 10 wt% of it is efficient for increasing the flexural and tensile strengths of wood plastic composites-plush fibers. Then on the composites contained the optimal polyester (polish fiber 10% and carpet fibers 20%) for increasing the mechanical strength, TGA and DSC testes for experience the thermal behavior of the composites were analyzed. Thermal analyses results have shown that with addition of polyester in the wood composite plastic, are reduced the percentage of crystallization, temperature of crystallization and the temperature of stability and degradation thermal of the composite.Morphologic study by Scanning Electron Microscopy indicates that with the increasing percentage of polyester fibers, is more denser and smoother the integration between the fracture surface of the composite material.
Physics and Mechanical Wood
Ali Kazemi tabrizi; Amir Nourbakhsh; Javad Sepidehdam
Abstract
In this study, the effect of fish waste powder, base material polyethylene , and also the quantity of coupling agent (MAPE) on physical and mechanical properties of wood-plastic composite were studied. For this purpose, wood powder at 40% was mixed with 60% of HDPE. Fish waste in three levels (5, 10 ...
Read More
In this study, the effect of fish waste powder, base material polyethylene , and also the quantity of coupling agent (MAPE) on physical and mechanical properties of wood-plastic composite were studied. For this purpose, wood powder at 40% was mixed with 60% of HDPE. Fish waste in three levels (5, 10 and 15%) mixed into wood powder and coupling agent on three levels (0, 2 and 4) of HDPE in a blender at 180 °C and a speed rotating of 50 rpm, and samples were made with using of injection molding for standard tests. The mechanical properties: tensile and bending strength, bending and tensile modulus were investigated according of ASTM standards. This result suggests that increasing the amount of fish powder waste to 10%, increased bending strength while other strengths diminished. The amounts of all strengths were increased by increasing in percentage of coupling agent to 4%.The results shows that fish waste was suitable as a new material for wood plastics composites.
taherh Gholipour; Hossein Rangavar; Abolfazl Kargarfard
Abstract
In this study, physical and mechanical properties of wood-plastic composite made of Canola stem flour and polypropylene were investigated. Variable factors were four levels of canola stem flour (25, 50, 75 and 100 percent based on the dry weight of the wood flour) with and without pit. The control samples ...
Read More
In this study, physical and mechanical properties of wood-plastic composite made of Canola stem flour and polypropylene were investigated. Variable factors were four levels of canola stem flour (25, 50, 75 and 100 percent based on the dry weight of the wood flour) with and without pit. The control samples were made of only wood flour and polypropylene. Physical and mechanical properties including screw withdrawal strength perpendicular on the surface, flexural strength, modulus of elasticity, water absorption and thickness swelling after 2 and 24 hours immersion in water were measured in accordance with EN standards. Results showed that increasing the mixing ratio of canola stem flour to wood flour up to 25% resulted in increase in screw withdrawal strength perpendicular to the surface. Increasing this factor up to 50% led to increase in MOR and MOE. Thereafter, any increase in the mixture, decreased mechanical strengths. Increasing the mixing ratio of canola stem flour to wood flour resulted in increase in water absorption and thickness swelling after 2 and 24 hrs. The specimens without pit showed lowest amount of water absorption and thickness swelling levels and highest mechanical properties (screw withdrawal resistance, flexural strength and modulus of elasticity).
Amir Lashgari; Ayob Eshghi; Abolfazl Karegarfard; Ajang Tajedini
Abstract
In this research, the effect of nanoclay-particles on physical and mechanical properties of composites made using almond shell powder-polypropylene was studied. For this purpose, almond shell powder and nanoclay were used in three levels of 30%, 35% and 40% for almond and 0%, 2.5% and 5% for ...
Read More
In this research, the effect of nanoclay-particles on physical and mechanical properties of composites made using almond shell powder-polypropylene was studied. For this purpose, almond shell powder and nanoclay were used in three levels of 30%, 35% and 40% for almond and 0%, 2.5% and 5% for nanoclay. In addition, 2% of Maleic Anhydride Polypropylene was added to all compositions. Then, wood-plastic nano-composite was formed using counter-rotating twin screw extruder and injection molding machine. Mechanical test including tensile, flexural, impact resistance, hardness and physical properties including water Absorption and Thickness Swelling after 2h and 24h immersion in water were measured. In addition X-Ray Diffraction (XRD) experiment was carried out to reveal how clay nano-particles are distributed across the manufactured composites and Scanning Electron Microscope (SEM) was also performed to investigate fracture surfaces. The results indicated that the presence of nano-clay did not influence the flexural and tensile elasticity modulus, and the presence of nano-clay reduced tensile and flexural resistance. The hardness and density of composites were higher than pure plastic and the impact resistance of all composites was lower than pure plastic. The presence of nano-clay did not significantly effect the physical properties of the composites (p< 0.05).The diffraction model of X-ray showed that nano-composite forms intercalation interlayer structure and the results of morphological investigation revealed that the samples containing 2.5 percent nano-clay and 35 percent of almond shell have the highest array of intercalation and the best transmittance.
Amir Nourbakgsh
Abstract
Two recycled polymers (rHTPE and rPP) combined with baggase fibers were used as the reinforcing material to improve the mechanical properties of wood plastic nanoclay composite. The amount of baggase fibers varied at three levels (25, 35 and, 45 percent). Two recycled polymers (rPP and rHDPE) were used ...
Read More
Two recycled polymers (rHTPE and rPP) combined with baggase fibers were used as the reinforcing material to improve the mechanical properties of wood plastic nanoclay composite. The amount of baggase fibers varied at three levels (25, 35 and, 45 percent). Two recycled polymers (rPP and rHDPE) were used as polymer matrix. Tensile, flexural and impact strength properties were measured according to ASTM standard tests. Scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) was performed to interpret the results. The results were statistically analyzed using factorial experimental under completely randomized block design and the averages were compared using DMRT. The application of 35 percent bagasse fibers as compared with 25 and 45 percent increased the strength of wood plastics composites. However, higher impact strength was reached using 25% bagasse fibers as compared with either 35 or 45% bagasse fibers. rHDPE nano-clay composite showed higher tensile, flexural and impact properties compared with rPP. Imaging the morphology of nano-clay by X-Ray diffraction and scanning electron microscopy showed the distribution of nano-clay particles in polymer structure and intercalation was observed.
Fardad Golbabaei; Hossein Hosseinkhani; Reza Hajihassani; Arash Rashnv
Abstract
The main objective of the production of cement - wood products or mineral-bounded composite panels is to combine the mineral components of lignocellulosic materials such as wood and organic particles with inorganic binders such as cement, plaster, etc. Wood cement products which are presently produced ...
Read More
The main objective of the production of cement - wood products or mineral-bounded composite panels is to combine the mineral components of lignocellulosic materials such as wood and organic particles with inorganic binders such as cement, plaster, etc. Wood cement products which are presently produced in most countries possess desirable functional properties such as good weather ability, resistance to atmospheric, biological agents and fire and are lighter weight as compared with other building materials, and provides improved dimensional stability. The flat panels using conventional presses can be produced, and also other products such as concrete blocks, bricks and pieces of different forms can be produced using appropriate frames. Large wood cement- based panels are widely used in construction of residential and commercial buildings. In this research, with respect to the availability of lignocellulosic material (agricultural residues such as rice straw, wheat straw, cotton stalk) in various areas (Gilan, Mazandaran and Golestan)) and the additive material (as calcium chloride), boards with similar structural was produced. Mechanical strength values including static bending strength, modulus of elasticity and elastic bending strength were measured. MSTATC based computer package was used to analyze the data. In terms of the maximum load strength, wood cement board made of poplar wood as the control boards (4.4146 MPa) had the highest mechanical strength followed by cotton stalks (2.463 MPa), wheat straw (1. 6776 MPa) and rice straw (0. 8622 MPa), respectively. In general, the study has indicated the suitability (given the appropriate ratio) of the agricultural residues in construction of wall and warehouse in farm lands.
Vahid reza ُSafdari; Nima Eskini; Ajang Tajdini; Vlima Bayramzadeh
Abstract
Wood anatomy in addition to genetic is affected by environmental factors. One of the environmental factors is soil erosion which affects anatomical properties of roots considerably. Juniperus excelsa is one of Iranin indigenous softwood and has longevity and anatomical properties of its root in two conditions: ...
Read More
Wood anatomy in addition to genetic is affected by environmental factors. One of the environmental factors is soil erosion which affects anatomical properties of roots considerably. Juniperus excelsa is one of Iranin indigenous softwood and has longevity and anatomical properties of its root in two conditions: inside of soil and exposed one can reveal effects of soil erosion on wood anatomical properties of root. So many roots and barks of trees in inside of soils and exposed have been sampled and many micro-sections prepared by microtome and anatomical properties were investigated. Results showed that wood roots under soil conform of one row of late-wood and by exposing the lumen area of tracheids in early-wood and late-wood were decreased and the cells appear thicker and late-wood portion increased. The axial parenchyma inclusion of dark resins in exposed roots observed frequently. Meanwhile by exposing of roots the thickness of bark decreased and the thickness of phloem and periderm in exposed root is not as wide as normal roots.
Roholah Mohebi; Aghang Tajedini; Ahmad Jahan-Latibari; Amir Nourbakhsh
Abstract
The influence of different contents (0, 5 and 10% W/W)of silica and poplar wood powder ( 30 ,40 and 50% W/W of total weight of composite) on strength properties of Polypropylene/Wood powder/Silica composite was evaluated. Various components of composite was melt mixed using two screw counter retating ...
Read More
The influence of different contents (0, 5 and 10% W/W)of silica and poplar wood powder ( 30 ,40 and 50% W/W of total weight of composite) on strength properties of Polypropylene/Wood powder/Silica composite was evaluated. Various components of composite was melt mixed using two screw counter retating extruder, followed by cooling and granulizing. Composite granules were injected into test samples. The results of strength properties measurements revealed that almost all strength values were improved. At higher content of silica, The MOR increased from 47.9 to 53.3 MPa, MOE from 2625 to 4517 MPa and MOE in tensile increased from initial value of 4525MPa (without silica) to 6884MPa (10% silica in composite). Marginal increase in tensile strength and Izod Impact strength was observed, but the hardness of the composite was improved from 66 to73.77 shoreD. At higher silica content, the density of the composite was higher, as expected.
Sina Modirrahmati; Ahmad Jahan-Latibari; Mansor Minaei
Abstract
The influence of nanoclay addition on the strength properties of HDPE/ Wheat straw powder Composite was investigated. Composites compounds were produced using 73%HDPE, 25% wheat straw powder and 2% MAPE and three amounts of nanoclay (1, 2, and 3% of composite compound). First, HDPE and nanoclay was melt- ...
Read More
The influence of nanoclay addition on the strength properties of HDPE/ Wheat straw powder Composite was investigated. Composites compounds were produced using 73%HDPE, 25% wheat straw powder and 2% MAPE and three amounts of nanoclay (1, 2, and 3% of composite compound). First, HDPE and nanoclay was melt- mixed and after cooling, the extrudate was milled to fine granules. This granules were then melt compounded with pre-weighted amount of wheat straw powder and MAPE followed by injection moulding to produce test specimens. The flexural, tensile and impact strength were measured. The results showed that the addition of nanoclay to the composite improved flexural strength and modulus, tensile strength and modulus. However the notched Izod strength was reduced.
Sina Modirahmati; Ahmad Jahan Latibari; Amir Nourbakhsh; Mehran Roohnia; Mansor Minaei
Abstract
The impact of nanoclay addition on the properties of polypropylene/ OCC fibers/ nanoclay Composite was investigated. Composites were prepared using 67% polypropylene, 30% OCC fiber, 3% MAPP and three dosages (2.5, 5, 7.5% based on total weight of PP/OCC/MAPP) of nanoclay. Premix- ...
Read More
The impact of nanoclay addition on the properties of polypropylene/ OCC fibers/ nanoclay Composite was investigated. Composites were prepared using 67% polypropylene, 30% OCC fiber, 3% MAPP and three dosages (2.5, 5, 7.5% based on total weight of PP/OCC/MAPP) of nanoclay. Premix- melting of nanoclay and polypropylene was used to add nanoclay to the composite mixture. Pre-mixed nanoclay/ polypropylene was melt-mixed with OCC fibers and MAPP and then test samples were made using this compound. The results revealed that addition of nanoclay to polypropylene/OCC fiber composite reduced flexural strength , tensile strength and notched Izod impact strength, but the flexural modulus and tensile modulus of final composite were improved significantly. The influence of nanoclay addition on flexural strength and tensile modulus of composite was statistically significant at 99% level whereas its effect on tensile strength was statistically significant at 95%. However, the effect of nanoclay on both flexural modulus of elasticity and impact strength was not statistically significant. The addition of nanoclay to the composite reduces the bonding between polypropylene and OCC fibers. In the case of notched Izod strength, nanoclay particles generated stress concentration point within the composite structure initiating easier failure. Water absorption after 2 and 24 hours immersion was reduced.
Mohammad Tasoji; Amir Nourbakhsh; Abolfazl Kargarfard; Hossein Hosseinkhani
Abstract
Physical and mechanical properties wood-plastic composites produced from wheat and rice straw particles, nano-clay, polypropylene and MAPP were investigated. The amount of polypropylene and lignocellulosic materials were selected as 60 wt% and 40 wt% respectively. The Nano-clay was added in three levels ...
Read More
Physical and mechanical properties wood-plastic composites produced from wheat and rice straw particles, nano-clay, polypropylene and MAPP were investigated. The amount of polypropylene and lignocellulosic materials were selected as 60 wt% and 40 wt% respectively. The Nano-clay was added in three levels 0, 2 and 4 wt% and the amount of coupling agent was fixed and set to 2 wt% for all treatments except for the control. The control samples were made from polypropylene and lignocellulosic materials with neither nanoclay nor coupling agent was used. The results showed that the tensile and flexural strengths were decreased by the addition of nanoparticles. For tensile and flexural modulus, adding 2 wt% of nanoclay led to an increase in both moduli. However there was a decrease in both moduli when 4 wt% nanoclay was added. The impact strength decreased adding nanoclay. There was a decrease in 24 hour water absorption when 2 wt% of nanoclay was added but an increase was observed in 4 wt% of nanoclay level. According to the mechanical and physical properties of all the treatments, the samples made of rice straw showed better results compare to wheat straw samples due to their high amount of silica and its compatibility with nanoclay. SEM test was performed.
Hassan Ziaei Tabari; Amir Nourbakhsh; Habibollah Khademi Eslam; behzad baziyar
Abstract
The aim of this study was to investigate the potential of using reed flour and different contents of montmorillonite (nanoclay) nanoparticles on the physical and tensile properties of polypropylener/reed flour/nano clay composite. The amount of coupling agent and reed flour was constant at 5% and 40%, ...
Read More
The aim of this study was to investigate the potential of using reed flour and different contents of montmorillonite (nanoclay) nanoparticles on the physical and tensile properties of polypropylener/reed flour/nano clay composite. The amount of coupling agent and reed flour was constant at 5% and 40%, respectively and nanoclay content, adjusted at four levels of 0, 1, 3 and 5% were considered. The materials were mixed in an internal mixer and the samples were prepared by injection molding method. The specimens were tested in accordance with EN ISO 527 standard test method for tensile properties (tensile strength and module) and elongation at break. Physical properties such as water absorption and thickness swelling were measured. The results of tensile moduli and strengths, elongation at break and physical properties (water absorption) showed improvement by the addition of nanoclay up to 3%.
Amir Nourbakhsh
Abstract
To improve the mechanical properties of wood plastics composites, four lignocellulosic materials (bagasse, rice straw, wheat straw and poplar wood powder) was used as the reinforcing material. The amount of nano-clay at different levels (0, 3 and 6%) were examined on the performance of wood plastic composites. ...
Read More
To improve the mechanical properties of wood plastics composites, four lignocellulosic materials (bagasse, rice straw, wheat straw and poplar wood powder) was used as the reinforcing material. The amount of nano-clay at different levels (0, 3 and 6%) were examined on the performance of wood plastic composites. Tensile, flexural and impact properties were measured in accordance with ASTM standard test methods. Scanning electron microscope imaging (SEM) and transmission electron microscope imaging (TEM) were performed to interpret the results. The applocation of bagasse and poplar wood powder compared with wheat and rice straws increased the strength of wood plastics composites. Using 3% nanoclay particles increased the strength properties to the maximum values. Imaging the morphology of nanoclay by X-ray diffraction and electron microscopy showed the distribution of nanoclay particles in polymer structure. With increasing the amount of nanoclay to 3%, the distance between layers increased.
Babak Mirzaei; Kazem Dosthosseini
Abstract
Lignocellulosic material used as raw material in pulp and paper production due to major chemical alterations produce different waste compounds and composite manufacturing is an area providing the opportunity to utilize such wastes. In order to investigate the feasibility of using papermaking sludge in ...
Read More
Lignocellulosic material used as raw material in pulp and paper production due to major chemical alterations produce different waste compounds and composite manufacturing is an area providing the opportunity to utilize such wastes. In order to investigate the feasibility of using papermaking sludge in composite production, four combinations of wood flour/ papermaking sludge/ high density polyethylene ratio were formulated, then composite panels were made and the physical properties of manufactured panels were evaluated. The content of maleated polyethylene (MAPE) and the polymer was constant 2% and 38% respectively, for all formulations. The results indicated that long term water absorption in particular thickness swelling decreased with increasing sludge content. Furthermore, moisture diffusion coefficient of samples containing 30% sludge and 30% wood flour was more than others. The results revealed that using papermaking sludge can be an alternative option for lignocellulosic raw material.