Volume 39 (2024-2025)
Volume 38 (2023-2024)
Volume 37 (2022-2023)
Volume 36 (2021-2022)
Volume 35 (2020-2021)
Volume 34 (2019-2020)
Volume 33 (2018-2019)
Volume 32 (2017-2018)
Volume 31 (2016-2017)
Volume 30 (2015-2016)
Volume 29 (2014-2015)
Volume 28 (2013-2014)
Volume 27 (2012-2013)
Volume 26 (2011-2012)
Volume 25 (2010-2011)
Volume 24 (2009-2010)
Volume 23 (2008-2009)
Volume 22 (2007-2008)
Volume 21 (2006-2007)
Volume 20 (2005-2006)
Volume 19 (2004-2005)
Volume 18 (2003-2004)
Volume 17 (2002-2003)
Volume 16 (2002-2003)
Volume 15 (2001-2002)
Volume 14 (2001-2002)
Volume 13 (2001)
Volume 12 (2000-2001)
Volume 11 (2000-2001)
Volume 10 (2000-2001)
Volume 9 (2000)
Volume 8 (1999)
Volume 7 (1999)
Volume 6 (1998)
Volume 5 (1998)
Volume 4 (1997)
Volume 3 (1997)
Volume 2 (1996)
Volume 1 (1995)
Composite wood products
A mathematical model to predict particleboard properties using the GMDH-type neural network and genetic algorithm

Zahra Jahanilomer; Saeed Reza farrokhpayam; Mohammad Shamsian

Volume 29, Fall 3 , November 2014, , Pages 376-389

https://doi.org/10.22092/ijwpr.2014.6130

Abstract
  Abstract In this study, GMDH neural network based on genetic algorithm was used to predict the physical and mechanical properties of laboratory made particleboard. To predict the mechanical and physical properties of particleboard we used input parameters such as neural network including press closing ...  Read More

Composite wood products
Investigation of OCC Fiber/Polymers Composites in Air – Forming Production

Amir Nourbakhsh; Kazem Dosthosseini; Abolfazl Kargarfard; Fardad Golbabaei; Reza Hajihassani

Volume 23, Issue 2 , October 2008, , Pages 91-101

https://doi.org/10.22092/ijwpr.2008.117408

Abstract
  This study investigated the effects of production variables on physical and strength properties of air-formed OCC fibers / polymer composites. A combination of 12  treatments of OCC fibers and coupling agents for air-forming were investigated. Physical and mechanical properties of the sample were ...  Read More