Rahim Kazemi; Farshid Faraji; Hedayatollah Aminian; Vahid Vaziri
Abstract
In this research, the effect of adding waste tire particles on physical and mechanical properties of oriented strand boards (OSB) produced from poplar wood strands was investigated. Constant factors of this research are: Poplar wood strands (Populus deltoides), phenol formaldehyde resin ...
Read More
In this research, the effect of adding waste tire particles on physical and mechanical properties of oriented strand boards (OSB) produced from poplar wood strands was investigated. Constant factors of this research are: Poplar wood strands (Populus deltoides), phenol formaldehyde resin (8 percent for the strands and 10 percent for waste tire on dry weight basis), three layer OSB (25 percent on either top and bottom layers and 50 percent core layer), boards with a thickness of 16 mm, dimensions of 40×40 cm with a nominal density of 0.75 g/cm3.Variable factors are: mixing ratio of waste tire particles to poplar strands at the four levels of 0:100, 5:95, 10:90, 15:85 and particle size of waste tire in three different sizes of 8, 18 and 45 mesh. The physical and mechanical properties of the boards were measured as defined in relevant European standards test methods EN 300. The results showed that changes in the amount and size of waste tire particles have a significant effect on the physical and mechanical properties of OSB panels. Increasing the ratio of waste tire particles decreased the mechanical properties and inversely improved the thickness swelling of the panels. The minimum value of mechanical strength was observed in panels made of 15% waste tire particles and 45 mesh particles. In general, OSB containing waste tire particles can meet the requirements of the EN 300 standard.
Hussein Samouei; Farshid Faraji; Loya Jamalirad; Vahid Vaziry
Abstract
In this study, the effect of adding WTR on the physical and mechanical properties of OSB production from Paulownia wood was investigated. Fixed factors of this research are: Strands of Paulownia species with dimensions of 0.20 × 0.8 × 120 mm, Phenol formaldehyde resin (in strands 8% dry weight ...
Read More
In this study, the effect of adding WTR on the physical and mechanical properties of OSB production from Paulownia wood was investigated. Fixed factors of this research are: Strands of Paulownia species with dimensions of 0.20 × 0.8 × 120 mm, Phenol formaldehyde resin (in strands 8% dry weight of strands and in waste tire powder 10% dry weight of tire powder). Laboratory boards with a thickness of 17 mm, dimensions of 40 × 40 cm with a nominal density of 0.5 g / cm3, pressing time was 10 minutes and the pressing temperature was 180 ° C. The OSB were production made of 3 layers (top and bottom layer 25%, and middle layer 50% by weight). The OSB were made of 3 layers (top and bottom layer 25%, and middle layer 50% by weight). Variable factors are: the amount of tire powder was 10, 20 and 30% and the distribution of tire powder particles in 3 layers was scattered in the surface layers, in the middle layer and in all three layers. The mechanical and physical properties of the boards were measured as defined in relevant European standards test methods EN 300. The results of physical properties showed, that increasing the waste tire powder improved the thickness swelling of the boards, so that the minimum amount of thickness swelling in the maximum presence of waste tire powder was 30% and scattered in all three layers. The highest amount of mechanical strength was observed in panels made of 10% tire powder, so that the highest amount of MOR in 10% of tire powder and scattered in all three layers and the highest amount of MOE and IB in The same level of consumption was obtained by dispersing the tire powder in the surface layers.
Composite wood products
Behzad Ghasemi; Farshid Faraji; Sahab Hedjazi
Abstract
Abstract In this research, the effect of using natural poly lactic acid polymer and the amount of MAPP coupling agent on the physical and mechanical properties of composite manufactured by sunflower stem flour was studied. For this purpose, three levels of PLA polymer including 50, 60 and 70% and tow ...
Read More
Abstract In this research, the effect of using natural poly lactic acid polymer and the amount of MAPP coupling agent on the physical and mechanical properties of composite manufactured by sunflower stem flour was studied. For this purpose, three levels of PLA polymer including 50, 60 and 70% and tow levels of MAPP including 4 and 6 percent based on dry weight of polymer were used as variables. Then, the physical and mechanical properties of the test specimens including dimensional stability, resistance and tensile modulus, resistance and flexural modulus and impact resistance were measured. The results showed that increasing the amount of PLA polymer and reducing the share of sunflower stem flour and increasing MAPP up to 6 percent, increased the flexural, tensile and impact resistances and improved dimensional stability of the composites. But in contrast, the tensile and bending modulus of composites were reduced. However, by reviewing the results, it was found that the physical and mechanical properties of the composites made with this polymer and the particles of sunflower stem flour were competitive with other composites made with other chemical polymers and in some cases it was better than them.
Composite wood products
Laya Jamalirad; Fereshteh Kor; Farshid Faraji; Sahab Hedjazi
Abstract
In this research, the manufacture of particleboard using lignocellulosic residues including wheat straw and tobacco stalks mixed with industrial wood chips were studied. The variable factors included the mixture of wheat straw and tobacco stalks with industrial wood chips in four levels 0/100, 20/80, ...
Read More
In this research, the manufacture of particleboard using lignocellulosic residues including wheat straw and tobacco stalks mixed with industrial wood chips were studied. The variable factors included the mixture of wheat straw and tobacco stalks with industrial wood chips in four levels 0/100, 20/80, 40/60 and 60/40 (In any combination, according to the desired levels, tobacco stalks and wheat straw were used equally) and the amount of urea formaldehyde resin was at two levels 12 and 14% of the dry weight of the wood chips. The results showed that by increasing the mixture of wheat straw and tobacco stalk up to 60 percent, the physical and mechanical properties of the boards decreased significantly. But increasing the amount of adhesive consumption up to 14 percent had a positive impact on the physical and mechanical properties of the boards and improved internal bonding, bending strength and modulus of elasticity and dimensional stability of the boards. It means that by increasing the use of this type of wastes up to 40 percent with an increase in the amount of UF adhesive up to 14% can be produced the boards with the mechanical properties at standard level.
Composite wood products
Samira Brzali; Laya Jamalirad; Farshid Faraji; Sahab Hejazi
Abstract
In this research with the aim of using a natural component, renewable and environmentally friendly which is not environmental pollution, the physical and mechanical properties of plywood manufactured by populous with urea formaldehyde resin and silk cocoon were studied. For this purpose, silk cocoon ...
Read More
In this research with the aim of using a natural component, renewable and environmentally friendly which is not environmental pollution, the physical and mechanical properties of plywood manufactured by populous with urea formaldehyde resin and silk cocoon were studied. For this purpose, silk cocoon was used as filler and reinforcement for four levels of 0, 10, 20 and 30 percent according to dry weight of urea formaldehyde resin. The physical and mechanical properties of samples including water absorption and thickness swelling after 2 and 24 hours immersion in water, bending strength parallel and perpendicular to the surface layer grain and shear strength were measured. The results show that increasing the amount of silk cocoon, decreased water absorption and thickness swelling after 2 and 24 hours immersion in water and increased bending strength parallel and perpendicular to the surface layer grain and shear strength. So that, using 30 percent of silk cocoon, dimensional stability, bending strength and shear strength, were improved.