Document Type : Research Paper

Authors

1 Assistant Prof., Department of Paper and Packaging Technology, Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute (SRI), Karaj, Iran

2 Assistant Prof., Department of Paper and Packaging Technology, Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute (SRI), Karj, Iran

Abstract

    In this study, the synergic effects of cellulose nanocrystal and nanoclay on the biodegradation and migration behavior of composite films based on polylactic acid (PLA) were investigated.  PLA and PLA-based nanocomposite films containing different loads of cellulose nanocrystal and nanoclay (0, 3 and 5 wt % each) were fabricated using a solvent casting method. In order to improve the compatibility and miscibility of the whole system with respect to PLA matrix, cellulose nanocrystal was treated with oleic acid. For evaluating the biodegradation and migration behavior of films, the enzymatic degradation, biodegradation, buried in soil and compost; and overall migration were tested. The results indicated that the biodegradability of the composites increased with the increase of nanoparticles in the enzymatic, soil and compost media. Besides, with the addition of cellulose nanocrystal and nanoclay to the polymer matrix, the overall migration of composites decreased. This  could  be  due  to  a  better  adhesion  of  the  nanoparticles  to  the  polymer  matrix,  and the  tortuousity of  their  path.

Keywords

Main Subjects

-Almasi, H., Ghanbarzadeh, B., and Dehghannia, J. 2014. Properties of Poly(lactic acid) nanocomposite film containing modified cellulose nanofibers,  Iranian Journal of Polymer Science and Technology 26(6): 485-497.
 -Bordes, P., Pollet, E., and Avérous, L. 2009. Nano-biocomposites: Biodegradable polyester/nanoclay systems, Progress in Polymer Science 34(2): 125–155.
-Chuensangjun, C., Pechyen, C., and Sarote Sirisansaneeyakul, S. 2013. Degradation behaviors of different blends of polylactic acid buried in soil, Energy  Procedia 34: 73–82.
-Dadashi, S., Mousavi, M., Emam D-Jomeh, Z., and Oromiehie, A. 2012. Films based on Poly(lactic acid) biopolymer: effect of clay and cellulosic nanoparticles on their  physical, mechanical and structural properties, Iranian Journal of Polymer Science and Technology 25(2): 127-136.
-Drumright, R.E., Gruber, P.R., and Henton, D.E. 2000. Polylactic acid technology, Advanced Materials 12: 1841–1846.
-De Souza Lima, M.M., Wong, J.T., Paillet, M., Borsali, R., and Pecora, R. 2003. Translational and Rotational Dynamics of Rodlike Cellulose Whiskers, Langmuir, 19(1): 24-29.
-EN-1186.  2000.  Overall  migration  testing  for  packaging  and  other  food  contact materials. 
-Fortunati, E.,   Peltzer, M., Armentano, L., Torre, L., Jiménez, A., and Kenny, J.M.,  2012. Effects  of  modified  cellulose  nanocrystals  on  the  barrier  and  migration  properties of  PLA  nano-biocomposites. Carbohydrate  Polymers,  90: 948– 956.
 -Fukushima, K.,  Abbate, C., Tabuani, D., Gennari, M., and Camino, G., 2009.Biodegradation of poly(lactic acid) and its nanocomposites. Polymer Degradation and Stability, 94(10): 1646–1655.
-Garlotta, D., 2001. A literature review of poly(lactic acid). Journal of Polymers and the Environment, 9(2):  63–84.
-Hakkarainen, M., Karlsson, S., and Albertsson, A.C., 2000. Rapid (bio)degradation of polylactide by mixed culture of compost microorganisms-low molecular weight products and matrix changes. Polymer 41: 2331–2338.
-Ibach, R.E., Clemons, C.M., and Schumann, R.L., 2007. Wood-plastic composites with reduced moisture: Effects of chemical modification on durability in the laboratory and field. In: 9th international conference on wood and biofiber plastic composites, Madison, Wisconsin, USA.
-Karamanlioglu, M., 2013. Environmental degradation of the compostable plastic packaging material poly(lactic) acid and its impact on fungal communities in compost. PhD Thesis, University of Manchester, 198p.
-Krishnamachari, P., Zhang, J., Lou, J., Yan, J., and Uitenham, L., 2009. Biodegradable poly(lactic acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties. International Journal of Polymer Analysis and Characterization, 14(4): 336-350.
-Kord, B., Jari, E., Najafi, A.,  and Tazakorrezaie, V., 2014. Effect of nanoclay on the decay resistance and physicomechanical properties of natural fiber-reinforced plastic composites against white-rot fungi  (Trametes versicolor). Journal of Thermoplastic Composite Materials, 27(8): 1085-1096.
-Kord, B. and Roohani, M., 2015. Morphological, mechanical and barrier properties of   polylactic acid/cellulose nanocrystal/nanoclay composite films. Journal of Wood and Forest Science and Technology, 21 (4), 41- 60.
-Lee, S.H., and Wang, S., 2006. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites: Part A, 37: 80–91.
-Lim, L.T., Auras, R., and Rubino, M., 2008. Processing technologies for poly(lactic acid). Progress in Polymer Science, 33: 820–852.
-Liu, D. Y., Yuan, X. W., Bhattacharyya, D.  and Easteal A. J., 2010. Characterisation of solution cast cellulose nanofiber reinforced poly(lactic acid) Express Polymer Letters, 4(1): 26–31.
-Mutsuga,  M.,  Kawamura,  Y.,  and  Tanamoto,  K.,  2008.  Migration  of  lactic  acid  lactide  and  oligomers  from  polylactide  food-contact  materials.  Food  Additives  and Contaminants,  25:  1283–1290.

-Nieddu, E., Mazzucco, L., Gentile, P., Benko, T., Balbo, V., Mandrile, R., and Ciardelli, G., 2009. Preparation and biodegradation of clay composites of PLA. Reactive and Functional Polymers, 9(6): 371–379.

-Noushirvani, N., Ghanbarzadeh, B., and Entezami, A.K.,  2011. Comparison of tensile, permeability and color properties of starch-based bionanocomposites containing two types of fillers: sodium montmorilonite and cellulose nanocrystal. Iranian Journal of Polymer Science and Technology, 24(5): 391-402
-Paul, M.A., Delcourt, C., Alexandre, M.,  Degée, P.H., Monteverde, F., and Dubois, P.H., 2005. Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polymer Degradation and Stability, 87(3), 535–542.
-Rhim, J.W., Hong, S.I., and Ha, C.S., 2009. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT- Food Science and Technology, 42: 612–617.
-Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., and Dufresne, A., 2008. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal, 44(8): 2489–2498.
-Roohani, M., Kord, B., Motie, N., and Sharari, M., 2014. Biodegradation behaviors of cellulose nanocrystals -PVA nanocomposites.  Iranian Journal of Wood and Paper Industries, 5(2): 1-14.

-Roy, P.K.,  Hakkarainen, M., and Albertsson, A.C., 2012. Nanoclay effects on the degradation process and product patterns of polylactide.  Polymer Degradation and Stability,  97(8), 124-1260.

-Shogrena, R.L., Doane, W.M., Garlotta, D.,  Lawton, J.W., and Willett, J.L., 2003. Biodegradation of starch/polylactic acid/poly(hydroxyester-ether) composite bars in soil. Polymer Degradation and Stability, 79: 405–411.
-Sinha Ray, S., and Okamoto, M., 2003. Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromolecules Rapid Communication 24: 815–840.
-Singh G., Kaur N., Bhunia H., Bajpai P.K., Mandal U.K., 2011. Degradation behaviors of linear low-density polyethylene and poly(Llactic acid) blends. Journal of Applied Polymer Science, 124:1993-1998.