Document Type : Research Paper

Author

Abstract

One of the main reasons for low treatability of pine wood is pit aspiration during drying in free water domain or heartwood formation. In this research, for opening the aspirated pits in heartwood of loblolly Pine (Pinus taeda), biological incising modification method with bacteria was used and the impacts of different environments and strains of bacteria on the wood gas permeability were studied. Several famous and known strains of Bacillus subtilis UT B96 bacteria in collection of plant protection department of University of Tehran (22, 35, 40, and 96) were supplied in two different culture media of bacteria, namely Nutrient Broth and water bacteria solution. Optical microscopy was used to figure out the qualitative bacterial effect on the tracheid pit pairs. Data analysis revealed that bacteria strain no.22 and water bacteria solution are the most suitable selections to open the aspirated pits and improve the wood permeability. The more destructive effect of the best strain of bacteria may be due to its ability to produce more degrading enzyme. The higher impact of bacteria in the aquatic environment is probably due to their easier mobility, limited access to oxygen or lack of access to an alternative food.

Keywords

Main Subjects

-Adolf, F., Gerstetter, E. and Liese, W., 1972. Untersuchungen über einige Eigenschaften von Fichtenholz nach dreijähriger Wasserlagerung. Holzforschung 26:18–25.
-Ahmadzadeh, M., 2014. Biological control of plant disease-Plant probiotic bacteria, University of Tehran, Press. 479 p.
-Daniel, G., 2014. Fungal and bacterial biodegradation: White rots, brown rots, soft rots, and bacteria, Deterioration and Protection of Sustainable Biomaterials. ACS Symposium Series, American Chemical Society, pp. 23-58.
-Dashti, H., Tarmian, A., Faezipour, M., Hedjazi, S. and Shahverdi, M., 2013. Mass transfer through microwave-treated Fir wood (Abies alba L.): A gymnosperm species with torus margo pit membrane, drying technology: An International journal, 31(3): 359-364.
-Dehghan, M., Tahir, P., Taghiyari, H. 2014. Medium-density fiberboard made from Kenaf bast and core: Effects of refining pressure and time on specific gas permeability. Bioresources 9(4), 7198-7208.
-Durmaz, S., Yildiz, U. C., Yildiz, S., 2015. Alkaline enzyme treatment of Spruce wood to increase permeability. Bioresources 10(3), 4403-4410.
-Emaminasab, M., Tarmian, A., Pourtahmasi, K., 2015. Permeability of poplar normal wood and tension wood bioincised by Physisporinus vitreus and Xylaria longipes. International Biodeterioration & Biodegradation 105. 178-184.
-Eriksson, K. E., Blanchette, R., Ander, P., 1990. Morphological aspects of wood degradation by fungi and bacteria. In: Microbial and enzymatic degradation of wood and wood components. Springer Series in Wood Science. Springer Berlin Heidelberg, pp 1-87.
-Greaves, H., 1971. The bacterial factor in wood decay. Wood Science and Technology, 5.  p.6-16 by Springer-Verlag 1971.
-Henriksson, G. and Teeri, T., 2009. Biotechnology in the forest industry. In: M. Ek, G. Gellerstedt and G. Henriksson (Editors), Wood Chemistry and Biotechnology. Walter de Gruyter, pp. 273-300.
-Lee, J., Holbrook, N. M. and Zwieniecki, M. A., 2012. Ion induced changes in the structure of bordered pit membranes. Frontiers in Plant Science 3, 55.
-Lehringer, C., Richter, K., Schwarze, F. and Militz, H. 2009. A review on promising approaches for liquid permeability improvement in softwoods. Wood and Fiber Science, 41(4), pp. 373–385. the Society of Wood Science and Technology.
-Lehringer, C., 2011. Permeability improvement of Norway spruce wood with the white rot fungus physisporinus vitreus. Ph.D. thesis, Gottingen, the Faculty of Forest Sciences and Forest Ecology, Georg-August-University.
-Mai, C., Militz, H. and Kües, U., 2004. Biotechnology in the wood industry. Applied Microbiology and Biotechnology, 63(5): 477-494.
-Nilson, T. and Bjordal, C., 2008. Culturing wood-degrading erosion bacteria. International Journal of Biodeterioration and biodegradation 61 (2008) 3-10.
-Panek, M., Reinprecht, L. and Babiak, M., 2012. Improving of spruce wood impregnability with Bacillus subtilis and Trichoderma viride. Faculty of wood sciences and technology, technical university in Zvolen, Masarykova 24, SK-960 53 Zvolen, Slovakia. P: 11.
-Panek, M. and Reinprecht, L., 2011. Bacillus subtilis for improving spruce wood impregnability. Bioresources 6(3): 2912-2931.
-Salehpour, sh., Tarmian, A., 2014. Effect of Drying Method on the Permeability Coefficient of Oak Wood (Quercus infactoria. Iranian Journal of Wood and Paper Industries, Vol. 5, No. 1. 1-9.
-Sayar, M., Tarmian, A., Azadfallah, M., Taghiyari, H. R., 2013. Thermal treatment and its effect on the gas ermeability of Populus nigra. Iranian Journal of Wood and Paper In dustries, Vol.4, No. 1. pp. 151-159.
-Schwarze, W. M. R. F., Richter, K., Lehringer, C. and Militz, H., 2011. A Review on promising approaches for liquid permeability improvement in softwoods. The Society of Wood Science and Technology. Wood and Fiber Science, 41(4): 373–385.
-Siau, J.F., 1984. Transport processes in wood. Springer, Berlin, Heidelberg, New York, 245pp.
-Suolahti, O. and Wallen, A., 1958. Der Einfluss der Nasslagerung auf das Wasseraufnahmevermögen des Kiefernsplintholzes. Holz Roh Werkst 16:8–17.
-Susi, P., Aktuganov, G., Himanen, J. and Korpela, T., 2011. Biological control of wood decay against fungal infection. Journal of Environmental Management, 92(7): 1681-1689.
-Taghiyari, H. R., Parsapajouh, D., Karimi, A. N. and Pourtahmasi, K., 2008. Study on Gas Permeability of Juvenile wood and mature wood in Populus deltoids (69/55) and Populus × euroamericana (cv. I-214), Grown in Gillan Province, Iran; The Second National Congress on Poplar and Potential Use in Poplar Plantation, 2, PP. 133 – 140, 5th to 7th May, 2008.
-Taghiyari, H.R., Kalantari, A., Ghorbani, M., Bavaneghi, F., Akhtari, M.,  2015. Effects of fungal exposure on air and liquid permeability of nanosilver- and nanozincoxide-impregnated Paulownia wood International Biodeterioration and Biodegradation 105:51-57.
-Taghiyari, H.R., Moradi, M. B., 2014. Effect of heat treatment on longitudinal gas and liquid permeability of circular and square-shaped native hardwood specimens. Springer-Verlag Berlin Heidelberg. Heat Mass Transfer (2014) 50:1125–1136.
-Taghiyari, H. R., 2013. Nano-zycosil in MDF: gas and liquid permeability. Springer-Verlag Berlin Heidelberg. Eur. J. Wood Prod. (2013) 71:353–360.
-Taghiyari, H.R., Talaei, A., Karimi, A., 2011. A correlation between the Gas and Liquid permeability of Beech wood heat-treated in hot waterand steam mediums. Maderas. Ciencia y tecnología 13(3): 329-336.
-Tarmian, A. and Karimi, A., 2010. Conservation of wood artifacts. University of Tehran Press, 789p.
-Taylor, A. M., Gartner, B. L., Morrell, J. J., 2002. Heartwood formation and natural durability - A review. Wood and Fiber Science 34 (4):587-611.
-Tiralova, Z., Panek, M. and Novak, S., 2007. Durability of spruce wood pre-treated with bacteria Bacillus subtilis and microscopic fungus Trichoderma viride against selected wood-destroing fungi. Acta facultatis-xylologiae. Xlix (1): 45-51.
-USPTO (2009) Gas permeability measurement apparatus; patent number US 8079249 B2
-Zahedsheijani, R., Gholamiyan, H., Tarmian, A., Yousefi, H., 2011. Mass transfer in medium density fiberboard (MDF). Maderas. Ciencia y tecnología 13(2): 163-172.
-Zhang, X., Zhao, G., Li, D., Li, S. and Hong, Q., 2014. Identification and evaluation of strain B37 of Bacillus subtilis antagonistic to sapstain fungi on poplar wood. Scientific World Journal. 149342.
-Yildiz, S., Canakci, S., Yildiz, U., Ozgenc, O. and Tomak, E., 2012. Improving of the impregnability of refractory spruce wood by Bacillus licheniformis pretreatment. Bioresources 7(1): 565-577.