Document Type : Research Paper

Authors

1 Ph.D., Student, Department of Wood and Paper Science and Technology College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran-Iran

2 Professor, Department of Wood and Paper Science and Technology, College of Agriculture and Natural Resources, Karaj Branch, Islamic Azad University, Karaj-Iran

3 M.Sc., Student, Department of Wood and Paper Science and Technology, College of Agriculture and Natural Resources, Karaj Branch, Islamic ‎Azad University, Karaj-Iran.‎

Abstract

In this study, 10 samples of beech wood, without apparent defect, with dimensions of 360 × ‎‎16 × 16 ‎cm (length × radial × tangential) were selected, and after being exposed to variable ‎temperature (60, ‎‎80, 100, 120, 140, 160, and 180°C) and moisture content conditions ‎‎(moisture content in conditions ‎of: saturated with water (EMC=35±5%), equilibrium moisture content ‎exposed to air (EMC=19±5%), ‎and conditioning moisture content in a climatic chamber (EMC=12±2%), they underwent free ‎flexural ‎vibration test in two longitudinal-tangential and longitudinal-radial planes‎‏,‏‎ and some ‎of the physical, ‎mechanical, and acoustical properties in both planes‎ were investigated. The ‎results showed that the ‎correlation coefficient of the first three modes of flexural vibration in ‎both planes under ‎climatic ‎chamber had a similar situation, but when the samples were in the ‎water-saturated condition, they ‎showed an adverse behavior in each plane. The effect of ‎increasing the temperature above 100°C ‎caused stresses resulting from shrinkage leading to ‎the development of micro-cracks and reduction in ‎the modulus of elasticity of cell walls and ‎ultimately reduction in wave propagation ability of wood, ‎thus increase in the damping ‎vibration values in both longitudinal-tangential and longitudinal-radial ‎planes of the samples. ‎Also, the concurrent changes in modulus of elasticity and damping vibration in ‎both vibration ‎planes are a desirable indicator for monitoring the process from the primary logging ‎process ‎stages to processes such as wood drying and heat treatment.‎

Keywords

Main Subjects

-Aizawa, H., Eiichi, O., Ono, T., and Norimato, M., 1998. Acoustic ‎converting efficiency and anisotropic nature of wood. Wood Research, 85: ‎‎81-83.‎
-Bekhta, P., and Neimz, P., 2003. Effect of high temperature on the change in ‎color dimensional stability and mechanical properties of spurce wood, Holz ‎forschung. 57(5): 539-546.‎
-Bodig, J., Jayne, B.A., 1993.  Mechanics of wood and wood composites. ‎Krieger Publishing‏ ‏Co, Malabar Florida. 712 pp.‎
-Bordonné P.A., 1989. Module dynamique et frottement intérieur dans le ‎bois: Mesures sur poutres flottantes en vibrations naturelles Thèse de ‎doctorat de l'INP de Lorraine soutenue à Nancy. 154 p.‎
-Brasha, B., Ross, R., Pellerin, R., 1997. Stres wawe nondestructive ‎evalution of green veneer: Souther yellow pine and Douglas fir. ‎International Society for Optical Engineering, 2994: 296-306.‎
-Brémaud. I., Cabrolier, P., Gril, J., Clair, B., Gérard, J., Minato, K., ‎Thibaut, B., 2010. Identification of anisotropic vibrational properties of ‎Padauk wood with interlocked grain, Wood Science and Technology, ‎‎44:355-367.‎
-Bucur V (2006) Acoustics of wood. Springer-Verlag, Berlin, Heidelberg, ‎New York.393pp.‎
-Chan, J.M., 2007. Moisture content in radiata pine wood‏:‏‎ Implications for ‎wood quality and water-stress response. PhD Thesis. School of Forestry ‎College of Engineering.University of Canterbury Riccarton, Christchurch, New ‎Zealand. 210pp.‎
-Dündar, T., Kurt, S., As, Nusret., Uysal, B‎., 2012. Nondestructive evaluation of wood strength using thermal ‎conductivity‎.BioResources. 7(3): 3306-3316. ‎
-Forest Products Laboratory., 1999. Wood Handbook: wood as an ‎engineering material. Gen. Tech.Rep. FPL-113. Madison, WI: USDA Forest ‎Service, Forest Products Laboratory. 463p.‎
-Green, D., Kreschmann, D., 1994. Moisture content and the properties of clear ‎southern pine. Madison, WI: U.S. Dept. of Agriculture, Forest Service, Forest ‎Products Laboratory. 28p.‎
-Halabe, U., Bidgalu, G., Hota, G., Ross, R. 1995., Nondestractive evalution of ‎green wood using stress wawe and transverse vibration techniques. Materials ‎Evalution, 55(9): 1013-1018.‎
-Hill, C., 2006. Wood modification chemical,thermal and other process. ‎Chichester, England, 260 pp.‎
-Hossein. M.A, Roohnia, M, Shahverdi. M,  2009. Some footprints of wood ‎internal ‎defects on three first mode-shapes of free vibration،‎16th international ‎symposium ‎on nondestructive testing and evaluation of wood, 2-14 October, ‎Beijing‏ , ‏China: 23-32.‎
-Jody, D., Gray, Shawn T., Grushecky, A., Armstrong, J.P., 2008. Stress wave ‎velocity and dynamic modulus of elasticity of yellow poplar ranging from 100 ‎to 10 percent moisture .Proceedings, 16th central hardwood forest conference. ‎Department of Agriculture, ‎Forest Service, Northern Research Station. IN ‎April 8-9, 2008.pp:139-142.‎
-Kamdem, D. P., Pizzi, A., Jermannaud, A., 2002. Durabillity of heat-treated ‎wood, Holz als Roh-und Wekstoff,  60: 1-6.‎
-Kohantorabi, M., Roohnia, M., 2013. Detection of defects in joints using the ‎variations in dynamic shear modulus and Correlation Coefficient factor in ‎Beech Wood. Iranian Journal of Wood and Paper Science Research, 28(2): ‎‎238-257.‎
-Kohantorabi, M., Roohnia, M., Haji Rafeiha, E., and Asgari, A., 2014. ‎Nondestructive evaluation of defects (face to face and end to end joints) with ‎polyvinyl acetate applied adhesive using vibration method. Iranian Journal of ‎Renewable Natural Resourses Research, 4(3): 21-34. ‎
-Kohantorabi, M., Hossein, M.A, Shahverdi, M., Roohnia, M., 2015. Vibration ‎Based NDT Methods to Verify Wood Drying Efficiency.  DRVNA ‎INDUSTRIJA, 66 (3): 221-228.‎
-Korkut, S., Akgul, M., Dundar, T. 2008. The effect of heat treatment on some ‎technological properties of scots pine (pinus sylvestries L.) wood, BioResource. ‎‎99:1861-1868‎.
-Kretschmann, D., Green, D., 1996. Modeling Moisture content-mechanical ‎property relationships for clear southern pine. Wood and Fiber Science, 28(3): ‎‎320-337.‎
-Kubojima, Y., Suzuki, Y., Tonosaki, M., 2005. Vibrational Properties of ‎Green Wood in High Temperature Water Vapor; Holzforschung. 59: 446-450.‎
-Llana, D.F., Gonzalez, G.I., Francisco, A., Niemz, P. 2013. Influence of ‎Temperature and Moisture Content in Non-destructive values of Scots pine ‎‎(Pinus sylvestris L). Proceedings 18th International Nondestructive Testing and ‎Evaluation of Wood Symposium. Madison, Wisconsin, USA. September 24-‎‎27. 2013. Pp: 451-457.‎
-Matan, M., Buhnnum, K. 2003. Effect of moisture content on some physical ‎and mechanical properties of juvenile rubberwood (Hevea brasiliensis Muell. ‎Arg). Songklanakarin Journal Science Technology, 25(3):328-340.‎
-Obataya, E., Norimoto, M., 1999. Acoustic properties of a reed (Arundo donax ‎L.) used for the vibrating plate of a clarinet, Journal of Acoustical Society of ‎America, 106 (2): 1106-1110.‎
-Ohsaki, H., Kubojima Y., Tonosaki M. & Ohta M., 2006. Vibrational ‎Properties of wetwood of todomatsu (Abies sachalinesis) at high temperature. ‎Journal of Wood Science. 53(2): 134-138‎
-Perré, P.; Roger, B. K., 2006. Drying of Wood: Principles and Practices. ‎Taylor and Fransis group, LLC, 57 p.‎
-Roohnia, M., Yavari, A. Tajdini, A., 2009. Elastic Parameters of Poplar Wood ‎with End-Cracks. Annals of Forest Science, 26 (2): 141-153.‎
-Roohnia, M., Kohantorabi, M., Jahan-Latibari, A., Tajdini, A. and Ghaznavi, ‎M., 2012. Nondestructive assessment of glued joints ‎in timber applying ‎vibration-based methods. European Journal of Wood and Wood Products, 70: ‎‎791-799.‎
-Segolpayegani, A., Brémaud, I., Gril, J., Thevenon, M.F. and Pourtahmasi, K., ‎‎2012. Effect of extractions on dynamic mechanical properties of white ‎mulberry (Morus alba). Journal of Wood Science, 58(2):153-162‎
-Silva, D.A.L., Lahr, F.A.R., Faria, O.B., Eduardo, C., 2012. Influence of Wood ‎Moisture Content on the Modulus of Elasticity in Compression Parallel to the ‎Grain. Materials Research, 15(2): 300-304‎
-Skaar, C., 1998. Wood-Water Relations, Springer-Verlag, Berlin, Heidelberg, ‎New York. 291pp.‎
-Yang, X., Ishimaru, Y., Iida, I. Urakami, H., 2002. Application of modal ‎analysis by transfer function to nondestructive testing of wood I: ‎Determination of localized defects in wood by shape of the flexural vibration ‎wave. Journal of Wood Science, 48: 283–288.‎