Document Type : Research Paper

Authors

Assistant professor, Department of Cellulose Industries Engineering, Natural resources faculty, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.

Abstract

The use of old corrugated container (OCC) is considered an effective solution by the paper industries in paper and paperboard productions bearing environmental and economic reasons. The strength properties of pulp made from recycled paper is weaker than the original pulp for various reasons, such as hornification. Therefore, various methods as adding strength enhancing materials and mechanical treatments are used to improve the quality of them. Because of little amount of production, many of the paper recyclers have limitation in investment of using mechanical treatments (refiners) in their production line. In this research, using cationic starch and cellulose nanofibers(CNF) was investigated as strengthen additives and as an alternative for mechanical refining in the paper and paperboard production from OCC. In this study, cationic starch in one level (2%) and cellulose nanofibers in 3 levels (2, 4, 6%) were used and compared to control (refined and non-refined) samples. Results showed that 2% CS and 4% CNF improved the tensile and burst indices same as or more than refining of pulp, while the pulp dewatering time and paper density were equal. Therefore, the aforementioned conditions are recommended as a substitute for refining in small units of waste paper recycling for paper and paperboard production.

Keywords

Main Subjects

-Amini Niaki, S. R. and Ghazanfari Moghaddam, A., 2011. Optimization of lignin content reduction in date palm fibers by Response Surface Methodology and desirability function.Journal of Separation Science and Engineering, 3(1): 31-40.
-Aslan, N., 2007. Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a multi-gravity separator for chromite concentration. Powder Technology, 86: 769–776.
-Akbarpour, I., Resalati, H. and Saraeian, A.R., 2011. Investigation on the appearance properties of waste newspaper deinked by cellulase compared to chemical method. Iranian Journal of Natural Resources, 63(4): 331-341.
-Bajpai, P., 2014. Recycling and Deinking of Recovered Paper. Elsevier, 240p.
-Box, G.E.P. and Behnken, D.W., 1960. Some New Three Level Designs for the Study of Quantitative Variables, Technometrics, 2: 455-475.
-Box, G.E.P. and Hunter, J.S., 1957. Multi-factor experimental designs for exploring response surfaces. The Annals of Mathematical Statistics. 28(1): 195-241.
-Chen, X., Du, W. and Liu, D., 2008. Response surface optimization of biocatalytic biodiesel production with acid oil. Biochemical Engineering Journal, 40: 423-429.
-Clarke, G.M. and Kempson, R. E., 1997. Introduction to the Design and Analysis of Experiments, Arnold, London, 334p.
-Cornell, J.A., 1990. How to Apply Response Surface Methodology. second ed., American Society for Quality Control, Wisconsin, 82p.
-Gaquere-Parker, A.C., Ahmed, A., Isola, T., Marong, B., Shacklady, C. and Tchoua, P., 2009. Temperature effect on an ultrasound-assisted paper de-inking process. Ultrasonics Sonochemistry, 16: 698–703.
-Kang, T., 2007. Role of External Fibrilation in Pulp and Paper Properties. Ph.D. thesis, Department of Forest Products Technology, Helsinki University of Technology, Espoo, Finland.
-Lu, S. Y., Qian, J. Q., Zhang, G. W., Wei, D. Y., Wu, G. F. and Yi, B. P., 2009. Application of statistical method to evaluate immobilization variables of trypsin entrapped with sol-gel method. Journal of Biochemical Technology, 1(3), 79–84.
-Manson, W., D., Reeves, H, H. and Kocurek, M.J., 1992. Pulp and Paper Manufacture, Vol 6. Stock Preparation, Joint Text Book Committee of the Paper Industry, TAPPI, 3: 187-200.
-Mirshokrai, A., 2001. Guide to Waste Paper. Tehran Aiezh Press. 2nd Edition, 140p.
-Myers, R.H. and Montgomery, D.C., 1995. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley and Sons, New York, 728p.
-Noori, H., Hosseini, S.Z., Ghasemian, A., Vaziri, V. and Kabiri, E., 2009. The influence of refining on the mechanical and optical properties of recycled newspaper, Journal of Wood & Forest Science and Technology, 16(2).
-Sharifi, H., Zabihzadeh, S. M. and Ghorbani, M., 2018. The application of response surface methodology on the synthesis of conductive polyaniline/cellulosic fiber nanocomposites. Carbohydrate Polymers, 194: 384–394.
-Shostrom, A., 2007. Principles of chemistry wood, Seyed Ahmad Mirshokraei Translation, Academic Publishing Center, Tehran, 100-170 p. (In Persian).
-Sharifi Pajaie, H. and Taghizadeh, M., 2015. Optimization of nano-sized SAPO-34 synthesis in methanol-to-olefin reaction by response surface methodology. Journal of Industrial and Engineering Chemistry, 24: 59-70.
-Tatsumi, D., Higashihara, T., Kawamura, S. and Matsumoto, T., 2000. Ultrasonic treatment to improve the quality of recycled pulp fiber. Journal of Wood Science, 46: 405-409.
-Wu, C.F.J., and Hamada, M. 2009. Experiments: planning, analysis, and parameter design optimization. Second edition, John Wiley and Sons, New York, 853p.
-Xing, M., Yao, S., Zhou, S., Zhao, Q., Hang Lin, J. and Wen Pu, J., 2010. The influence of ultrasonic treatment on the bleaching of CMP revealed by surface and chemical structural analyses, Bioresources, 5(3): 1353-1365.
-Zhao, Q., Pu, J.W., Xing, M. and Zhou, S. k., 2009. Influence of ultrasonic treatment on fiber morphology structure in bleaching process, China Pulp & Paper Industry, 30(2), 28-33.