Document Type : Research Paper

Authors

1 MSc. student, Dept. of Bio-refinery, Shahid Beheshti University

2 Head of bio-refinery deaprtyment, shahid beheshti university

3 BioRefinery Dept., Faculty of New Technologies and Engineering, Zirab Science and Research Campus, Shahid Beheshti University, Tehran, Iran

4 Assistant Professor, Dept. of Bio-Refinery, Shahid Beheshti University, Zirab Campus, Savadkooh, Mazandaran, Iran

Abstract

In this study, in order to control the inhibitory compounds in the bio-refinery, bagasse pith was pretreated under acidic hydrolysis with dilute sulfuric acid 8%, 90 minutes at 120 ° C. Then, by using de-depleting methods of overliming, activated carbon and combining of both, removal of deterrent compounds from the above pretreatment hydrolyzates was performed. In the overliming, calcium hydroxide and sulfuric acid, in activated carbon method, activated carbon was used at three levels (0.5, 1.5 and 2.5%) and in the combined method of the combination of materials in the two previous methods became after acid treatments and each of the methods of insemination, the amount of recovered sugars and the values of the inhibitory compounds of furfural and hydroxymethylfurfural in the hydrolyzate were measured as two important indicators. The results showed that application of the above methods on hydrolyzate increased the yield of reduced sugars, so that the highest sugar yield (˃32%) was obtained after the independent method of overliming. In addition, active and combined carbon autonomous methods (overlimming and activated carbon) have an optimum activated carbon consumption of 2.5 and 1.5%, respectively. The qualitative study of the presence of inhibitory agents in hydrolyzates showed that furfural and hydroxymethylfurfural have maximum absorption at wavelengths of 276 and 282 nm. Also, an overliming with 2.5% activated carbon as the best method could eliminate up to 100% of inhibitory compounds. On the other hand, the autonomous method of overliming, with the removal of ˃90% of the inhibitory compounds, also has the highest sugar yield. Therefore, taking into account simultaneously the rate of sugar yield and the elimination of deterrent compounds, two independent alternatives of Overliming and Overliming with 2.5% active carbon could be proposed for the production of bioassays, such as bioethanol, xylitol, ... from the pith of bagasse.

Keywords

Main Subjects

-Agbor, V. B., Cicek, N., Sparling, R., Berlin, A. and Levin, D. B., 2011. Biomass pretreatment: fundamental toward application. Review paper, Biotechnology Advances, (29): 675-685.
-Aghcheh, R. K., Bonakdarpour, B. and Zokaee Ashtiani, F., 2016. The Influence of Sugar Cane Bagasse Type and Its Particle Size on Xylose Production and Xylose-to-Xylitol Bioconversion with the Yeast Debaryomyces hansenii. Applied Biochemistry Biotechnology, 180(6): 1141-1151.
-Alriksson, B., Cavka, A. and Jönsson, L. J., 2011. Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresource Technology, 102(2): 1254-1263.
-Cavka, A. and Jönsson, L. J., 2013. Detoxification of lignocellulosic hydrolysates using sodium borohydride. Bioresource Technology, (136): 368–376.
-Chi, C., Zhang, Z., Chang, H. and Jameel, H., 2009. Determination of Furfural and Hydroxymethylfurfural Formed From Biomass Under Acidic Conditions. Journal of Wood Chemistry and Technology, 29: 265–276.
-Converti, A., Dominguez, J. M., Perego, P., Da Silva, S. S. and Zilli, M., 2000. Word Hydrolysis and Hydrolyzate Detoxification for Subsequent Xylitol Production. Chemical Enginnering and Technology, 23(11): 1013-1020.
-Inoue, H., Tanapongpipat, S., Kosugi, A. and Yano, S., 2008. Saccharifiction and ethanol fermentation of sugarcane bagasse and rice straw from Thailand, The 10th biomass Asia workshop, Thailand.
-Jain R. K., 2011. Bioethanol from bagasse pith a lignocellulosic waste biomass from paper/sugar industry, Indian Pulp & Paper Technical Association Journal, 23(1): 169–173.
-Jönsson, L. J. and Martín, C., 2016. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresources Technology, (199): 103–112.
-Kim, D., 2018. Physico-Chemical Conversion of Lignocellulose:Inhibitor  and Detoxification Strategies:A Mini Review.Molecules, 23(2): 309.
-Lavaracka, B. P., Griffin, G. J. and Rodmanc, D., 2002. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass and Bioenergy, 23: 367 – 380.
-Li, Zh., Fei, B. and Jiang Z., 2014. Comparison of dilute organic and sulfuric acid pretreatment for enzymatic hydrolysis of bamboo. BioResources, 9(3): 5652-5661.
-Lois-Correa J.A., 2012. Depithers for Efficient Preparation of Sugarcane Bagasse Fibers in Pulp and Paper Industry. Ingenieria Investigacion y Tecnologia, 8(4): 417-424.
-Marton, J. M., Felipe,M. G. A., Almeida e Silva, J. B. and Pessoa Júnior, A., 2006. Evaluation of the Activated Charcoals and Adsorption Conditions Used in The Treatment of Sugarcane Bagasse Hydrolysate for Xylitol Production. Brazilian Journal of Chemical Engineering, 23: 9 – 21.
-Miller, G. L., 1954. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31: 426–428.
-Mussatto S. I. and Roberto I. C., 2001. Hydrolysate detoxification with activated charcoal for xylitol production by Candida guilliermondii. Biotechnology Letters, 23: 1681–1684.
-Rao, R. S., Jyothi, Ch. P.,Prakasham,R. S., Sarma,P.N., and Rao, L. V., 2006. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresource Technology, 97: 1974–1978.
-Sanjuan R., Anzaldo J., Vargas J., Turrado J. and Patt R., 2001. Morphological and Chemical Composition of Pith and Fibres from Mexican Sugarcane Bagasse. Holzals Roh-und Werkstoff, 59: 447-450.
-Sene, L., Vitolo, M., Felipe, M. G. A. and Silva, S. S., 2000. Effects of Environmental Conditions On xylose reductase and Xylitol Dehydrogenase Production by Candida guilermondii. Application of Biochemical Bioengineering, 84-86: 371-380.
-Shafiei Amrehee, S. SH., 2016. Production Bioethanol from Bagasse Pith Xylan. MSc. Thesis, Department of Bio-refinery, Shahid Beheshti University, Tehran.
-Takagaki A., Ohara M., Nishimura Sh and Ebitani K., 2010. One-pot Formation of Furfural from Xylose via Isomerization and Successive Dehydration Reactions over Heterogeneous Acid and Base Catalysts. Chemistry Letters Journals, 39: 838-840.
-Vallejosa, M. E.,Chade, M., Mereles, E. B.,Bengoechea, D. I., Brizuela, J. G., Felissia, F. E., and Area, M. C., 2016. Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Industrial Crops and Products, 91: 161–169.
-Zhang, J., Li, J., Tang, Y. and Xue, G., 2013. Rapid Method for the Determination of 5-Hydroxymethylfurfural and Levulinic Acid Using a Double-Wavelength UV Spectroscopy. The Scientific World Journal, 2013: 1-6.
-Zhang, Yi, Ding, sh., R. Mielenz, j., Cui, j., T. Elander, r., Laser, m., E. Himmel, m., R. McMillan, j. R. and Lynd, l., 2007. Fractionating Recalcitrant Lignocellulose at Modest Reaction Conditions. Biotechnology and Bioenginnering, 97: 214-223.