Document Type : Research Paper

Authors

1 Ph.D. Candidate, Department of Wood and Paper Science and Technology, Karaj Branch, Islamic Azad University.

2 Prof., Department of Wood and Paper Science and Technology, Karaj Branch, Islamic Azad University Karaj Branch, Karaj, Iran,

3 Associate Prof., Department of Wood and Paper Science and Technology, Karaj Branch, Islamic Azad University, Karaj, Iran.

Abstract

The first step in feasibility study of any national mega projects in energy sector is the investigation on the production potential and evaluate the market demand for the product. The success rate of a biofuel project after forecasting supply and demand depends on choosing the appropriate place to produce. In this respect, factors such as the selection of appropriate production site, environmental, technical, economic and social are among major issues. In this study, autoregressive integrated moving average (ARIMA) model was used for the prediction of bioethanol demand in five sceneries; E5, E10, E15, E20 and E30. The time period up to 1412 is foreseen. The data on agricultural wastes and the present and future potentials for the bioethanol production in different provinces is analyzed. The results indicate that, the average daily consumption of gasoline will increase to 136,922 million liters per day as we reach 1412.The study also shows that there exists the potential for the production of 18.16 million liters of bioethanol which can fulfill the requirement of E5 and E10 by 1412. If we want to implement the E20 and E30 scenario in the country, it is necessary to increase the production of 7 selected products in this research, in the provinces of Khuzestan, Fars, Khorasan Razavi, Golestan, Isfahan, Mazandaran, Tehran, Qazvin and Alborz and Gilan by 62.2 million tons per year by 1412, And consider the effective factor in the success of the project, namely the support of the government and legislators for national mega projects.

Keywords

-Adewuyi, A., 2020. Challenges and prospects of renewable energy in Nigeria: A case of bioethanol and biodiesel production, Energy Reports, Elsevier Ltd, 6, 77–88. DOI: 10.1016/j.egyr.2019.12.002
-Ahmadi, A., Esmaeilion, F., Esmaeilion, A., Ehyaei, M. A. and Silveira, J.L., 2020. Benefits and Limitations of Waste-to-Energy Conversion in Iran, Renewable Energy Research and Application, 1(1), 27–45. DOI: 10.22044/RERA.2019.8666.1007
-Ahmadi, K., Ebadzadeh, H., Hatami, F., AbdeShah, H. and Kazemian, A., 2021.  Ministry of Agriculture - Jahad.  Deputy of Planning and Economy of Information Technology Center. first volume. 1-89. (http://amar.maj.ir). Accessed 8 March 2021.
-Ahorsu, R., Medina, F. and Constantí, M., 2018. Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: A review, Energies, 11(12). DOI: 10.3390/en11123366
-Alsaleh, M., Abdul-Rahim, A.S., and Mohd-Shahwahid, H.O., 2017. An empirical and forecasting analysis of the bioenergy market in the EU28 region: Evidence from a panel data simultaneous equation model, Renewable and Sustainable Energy Reviews, Elsevier Ltd, 80(October 2016), 1123–1137. DOI: 10.1016/j.rser.2017.05.167
-Bonenkamp, T.B., Middelburg, L.M., Hosli, M.O. and Wolffenbuttel, R.F., 2020. From bioethanol containing fuels towards a fuel economy that includes methanol derived from renewable sources and the impact on European Union decision-making on transition pathways, Renewable and Sustainable Energy Reviews, Elsevier Ltd, 120, 109667. DOI: 10.1016/j.rser.2019.109667
-Branco, R.H.R., Serafim, L.S. and Xavier, A.M.R.B., 2019. Second generation bioethanol production: On the use of pulp and paper industry wastes as feedstock, Fermentation, 5(1), 1–30. DOI: 10.3390/fermentation5010004
-Bullock, R.C.L., Zurba, M., Parkins, J.R. and Skudra, M., 2020. Open for bioenergy business? Perspectives from Indigenous business leaders on biomass development potential in Canada, Energy Research and Social Science. DOI: 10.1016/j.erss.2020.101446
-Calderón, C., 2016. European bioenergy outlook 2013 statistical report, AEBIOM: European Biomass Association.
-Canada Centre Environment and Climate Change. (2020). GLOBAL GREENHOUSE GAS EMISSIONS CANADIAN ENVIRONMENTAL SUSTAINABILITY INDICATORS, Her Majesty the Queen in Right of Canada, represented by the Minister of Environment and Climate Change, 2020.
-Cardoso, L.C.B., Bittencourt, M.V.L., Litt, W.H. and Irwin, E.G., 2019. Biofuels policies and fuel demand elasticities in Brazil, Energy Policy, Elsevier Ltd, 128(August 2017), 296–305. DOI: 10.1016/j.enpol.2018.12.035
-Chanthawong, A., Dhakal, S., Kuwornu, J.K.M. and Farooq, M.K., 2020. Impact of Subsidy and Taxation Related to Biofuels Policies on the Economy of Thailand: A Dynamic CGE Modelling Approach, Waste and Biomass Valorization, Springer Netherlands, 11(3), 909–929. DOI: 10.1007/s12649-018-0417-4
-D’Adamo, I., Falcone, P. M., Gastaldi, M. and Morone, P., 2020. RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport, Energy Policy, Elsevier Ltd, (November), 111220. DOI: 10.1016/j.enpol.2019.111220
-Eckert, C.T., Frigo, E.P., Albrecht, L.P., Albrecht, A.J.P., Christ, D., Santos, W.G., Berkembrock, E. and Egewarth, V.A., 2018. Maize ethanol production in Brazil: Characteristics and perspectives, Renewable and Sustainable Energy Reviews, Elsevier Ltd, 82(June 2017), 3907–3912. DOI: 10.1016/j.rser.2017.10.082
-Ediger, V.Ş. and Akar, S., 2007. ARIMA forecasting of primary energy demand by fuel in Turkey, Energy Policy, 35(3), 1701–1708. DOI: 10.1016/j.enpol.2006.05.009
-Farine, D.R., O’Connell, D.A., Raison, R.J., May, B.M., O’Connor, M.H., Crawford, D.F., Herr, A., Taylor, J.A., Jovanovic, T., Campbell, P.K., Dunlop, M.I.A., Rodriguez, L.C., Poole, M.L., Braid, A.L. and Kriticos, D., 2012. An assessment of biomass for bioelectricity and biofuel, and for greenhouse gas emission reduction in Australia, GCB Bioenergy, 4(2), 148–175. DOI: 10.1111/j.1757-1707.2011.01115.x
-Ghaderi, H., Gitinavard, H. and Pishvaee, M.S., 2020. A system dynamics approach to analysing bioethanol and biodiesel supply chains: Increasing bioethanol and biodiesel market shares in the USA, International Journal of Energy Technology and Policy, 16(1), 57–84. DOI: 10.1504/IJETP.2020.103849
-Gnansounou, E., Pachón, E.R., Sinsin, B., Teka, O., Togbé, E. and Mahamane, A., 2020. Using agricultural residues for sustainable transportation biofuels in 2050: Case of West Africa, Bioresource Technology, Elsevier, 305(February), 123080. DOI: 10.1016/j.biortech.2020.123080
-Hales, D., 2018. Renewables 2018, Global Status report.
-Haputta, P., Puttanapong, N., Silalertruksa, T., Bangviwat, A., Prapaspongsa, T. and Gheewala, S.H., 2020. Sustainability analysis of bioethanol promotion in Thailand using a cost-benefit approach, Journal of Cleaner Production, Elsevier B.V., 251. DOI: 10.1016/j.jclepro.2019.119756
-IQAir., 2019. 2019 World Air Quality Report, Greenpeace, Amsterdam, Netherlands.
-Kazemi Shariat Panahi, H., Dehhaghi, M., Aghbashlo, M., Karimi, K. and Tabatabaei, M., 2020. Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline, Renewable Energy, Elsevier Ltd, 145, 699–710. DOI: 10.1016/j.renene.2019.06.081
-Kumar, A., Singh, J. and Baskar, C., 2019. Lignocellulosic Biomass for Bioethanol Production Through Microbes: Strategies to Improve Process Efficiency, Springer International Publishing. DOI: 10.1007/978-3-030-14463-0_14
-Liu, W., Hou, Y., Liu, W., Yang, M., Yan, Y., Peng, C. and Yu, Z., 2020. Global estimation of the climate change impact of logging residue utilization for biofuels, Forest Ecology and Management, Elsevier, 462(January), 118000. DOI: 10.1016/j.foreco.2020.118000
-Ma, L., Hu, C., Lin, R. and Han, Y., 2018. ARIMA model forecast based on EViews software, IOP Conference Series: Earth and Environmental Science, 208(1). DOI: 10.1088/1755-1315/208/1/012017
-Macowski, D.H., Bonfim-Rocha, L., Orgeda, R., Camilo, R. and Ravagnani, M.A.S.S., 2020. Multi-objective optimization of the Brazilian industrial sugarcane scenario: a profitable and ecological approach, Clean Technologies and Environmental Policy, Springer Berlin Heidelberg, (0123456789). DOI: 10.1007/s10098-019-01802-0
-Mollahosseini, A., Hosseini, S. A., Jabbari, M., Figoli, A. and Rahimpour, A., 2017. Renewable energy management and market in Iran: A holistic review on current state and future demands, Renewable and Sustainable Energy Reviews, Elsevier Ltd, 80(December), 774–788. DOI: 10.1016/j.rser.2017.05.236
-Mu, D., Seager, T., Rao, P.S. and Zhao, F., 2010. Comparative life cycle assessment of lignocellulosic ethanol production: Biochemical versus thermochemical conversion, Environmental Management, 46(4), 565–578. DOI: 10.1007/s00267-010-9494-2
-Neves, R.C., Klein, B.C., da Silva, R.J., Rezende, M.C.A. F., Funke, A., Olivarez-Gómez, E., Bonomi, A. and Maciel-Filho, R., 2020. A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production, Renewable and Sustainable Energy Reviews, 119(July 2018). DOI: 10.1016/j.rser.2019.109607
-Ritchie, H. and Roser, M., 2019. Outdoor Air Pollution, Our World in Data. DOI: 10.1016/bs.coac.2016.02.004
-Safieddin Ardebili, S.M., 2020. Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran, Renewable Energy, Elsevier B.V., 154, 29–37. DOI: 10.1016/j.renene.2020.02.102
-Sarkar, N., Ghosh, S.K., Bannerjee, S. and Aikat, K., 2012. Bioethanol production from agricultural wastes: An overview, Renewable Energy, Elsevier Ltd, 37(1), 19–27. DOI: 10.1016/j.renene.2011.06.045