Document Type : Research Paper
Authors
1 Ph.D. Student of pulp and paper Industry, Agricultural Sciences and Natural Resources of Sari University. Iran
2 Associate Professor, Department of Wood and Cellulose products. Faculty of Natural Resources, Sari University of Agricultural Sciences and Natural Resources, Iran
3 Assistant Professor, Faculty of New Technologies and Aerospace Engineering of shahid Beheshti University, Iran
Abstract
Regeneration of cellulose by direct solvent dissolution essentially involves the pretreatment of cellulose with a solvent for swelling the cellulose chains and weakening the cellulose molecules bonds. Aqueous solutions based on sodium hydroxide (NaOH) are low cost, non-volatile, non-toxic, environmentally friendly cellulosic solvent with fast dissolution power at low temperatures. The mechanism of cellulose dissolution in this solvent is not yet fully understood because there are parameters such as temperature, crystallization and degree of cellulose polymerization that affect the solubility of cellulose in the NaOH / urea system. Therefore, this study investigated the effect of kappa factor changes in chlorine dioxide bleaching on the dissolution of OCC recycled pulp on chemical compounds (lignin and hemicellulose) and the degree of polymerization. The results showed that with further reduction of lignin, the dissolution of pulp decreases and this reduction in dissolution is more severe in lignin levels below 3% (reduction from 44% to about 37% dissolution). It seems that during the bleaching process and part of lignin and hemicellulose removal, a part of cellulose with low degree of polymerization is also removed and the average polymerization of the remaining cellulose increases which is more resistant to the phenomenon of pulp dissolution. With increasing kappa factor (to 0.2 and 0.3), there was no significant change in dissolution and hemicellulose. In general, it seems that lignin and the degree of polymerization are not only the effective factors in OCC pulp dissolving and hemicellulose content also can be effective.
Keywords