-Abdolzadeh, H., Ebrahimi, G., Layeghi, M. and Ghassemieh, M., 2015. Analytical and experimental studies on stress capacity with modified wood members under combined stresses. Maderas. Ciencia y tecnología 17:263-76.
-Addis, C.C., Koh, R.S. and Gordon, M.B., 2020. Preparation and characterization of a bio-based polymeric wood adhesive derived from linseed oil. International Journal of Adhesion and Adhesives 102:102655.
-Aydemir, D., Gündüz, G., Aşık, N. and Wang, A., 2016. The Effects of Poly (vinyl acetate) Filled with Nanoclay and Cellulose Nanofibrils on Adhesion Strength of Poplar and Scots Pine Wood. Wood Industry/Drvna Industrija 67.
-Bardak, T., Tankut, A.N., Tankut, N., Aydemir, D. and Sozen, E., 2017. The bending and tension strength of furniture joints bonded with polyvinyl acetate nanocomposites. Maderas. Ciencia y tecnología 19:51-62.
-Bardak, T., Tankut, A.N., Tankut, N., Sozen, E. and Aydemir, D., 2016. The effect of nano-TiO2 and SiO2 on bonding strength and structural properties of poly (vinyl acetate) composites. Measurement 93:80-85.
-Chaabouni, O. and Boufi, S., 2017. Cellulose nanofibrils/polyvinyl acetate nanocomposite adhesives with improved mechanical properties. Carbohydrate polymers 156:64-70.
-Clinton, B.D. and Van der Merwe, A., 2006. Management accounting-approaches, techniques, and management processes. Journal of cost management 20:14.
-Daneshvar, S., Behrooz, R., Najafi, S.K. and Sadeghi, G.M.M., 2019. Characterization of polyurethane wood adhesive prepared from liquefied sawdust by ethylene carbonate. BioResources 14:796-815.
-Dos Santos, R.M., Neto, W.P.F., Silvério, H.A., Martins, D.F., Dantas, N.O. and Pasquini, D., 2013. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products 50:707-14.
-Friedlander, S., 1999. Polymer-like behavior of inorganic nanoparticle chain aggregates. Journal of Nanoparticle Research 1:9-15.
-Gao, Q., Li, J., Shi, S.Q., Liang, K. and Zhang, X., 2012. Soybean meal-based adhesive reinforced with cellulose nano-whiskers. BioResources 7.
-Hicks, D.T., 2005. Good decisions require good models: Developing activity-based solutions that work for decision makers. Journal of cost management 19:32-40.
-Jiang, W., Tomppo, L., Pakarinen, T., Sirviö, J.A., Liimatainen, H. and Haapala, A.T., 2018. Effect of cellulose nanofibrils on the bond strength of polyvinyl acetate and starch adhesives for wood. BioResources 13:2283-92.
-Kaboorani, A. and Riedl, B., 2012. Nano-aluminum oxide as a reinforcing material for thermoplastic adhesives. Journal of Industrial and Engineering Chemistry 18:1076-81.
-Kumar, V., Sharma, C. and Gupta, S., 2015. Compression and flexural properties of finger jointed mango wood sections. Maderas. Ciencia y tecnología 17:151-60.
-Mirjalili, F., Chuah, L. and Salahi, E., 2014. Mechanical and morphological properties of polypropylene/nano α-Al2O3 composites. The Scientific World Journal 2014.
-Moya, R., Rodríguez-Zúñiga, A. and Vega-Baudrit, J., 2015. Effects of adding multiwall carbon nanotubes on performance of polyvinyl acetate and urea-formaldehyde adhesives in tropical timber species. Journal of Nanomaterials 2015.
-Nakamura, Y., Yamaguchi, M., Okubo, M. and Matsumoto, T., 1992. Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. Journal of applied polymer science 45:1281-89.
-Park, S.W., Kim, B.C. and Lee, D.G., 2009. Tensile strength of joints bonded with a nano-particle-reinforced adhesive. Journal of Adhesion Science and Technology 23:95-113.
-Peruzzo, P.J., Bonnefond, A., Reyes, Y., Fernández, M., Fare, J., Ronne, E., Paulis, M. and Leiza, J.R., 2014. Beneficial in-situ incorporation of nanoclay to waterborne PVAc/PVOH dispersion adhesives for wood applications. International Journal of Adhesion and Adhesives 48:295-302.
-Reynaud, E., Jouen, T., Gauthier, C., Vigier, G. and Varlet, J., 2001. Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer 42:8759-68.
-Silvestre, J., Silvestre, N. and De Brito, J., 2016. Polymer nanocomposites for structural applications: Recent trends and new perspectives. Mechanics of Advanced Materials and Structures 23:1263-77.
-Sun, S., Li, C., Zhang, L., Du, H. and Burnell-Gray, J., 2006. Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly (vinyl chloride) composites. European polymer journal 42:1643-52.
-Taghiyari, H.R., Esmailpour, A., Adamopoulos, S., Zereshki, K. and Hosseinpourpia, R., 2020. Shear strength of heat-treated solid wood bonded with polyvinyl-acetate reinforced by nanowollastonite. Wood Res 65:183-94.
-Tran, A., Mayr, M., Konnerth, J. and Gindl-Altmutter, W., 2020. Adhesive strength and micromechanics of wood bonded at low temperature. International Journal of Adhesion and Adhesives 103:102697.
-Wang, H., Li, H., Xue, B., Wang, Z., Meng, Q. and Chen, L., 2005. Solid-state composite electrolyte LiI/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells. Journal of the American chemical society 127:6394-401.
-Wang, Z., Gu, Z., Hong, Y., Cheng, L. and Li, Z., 2011. Bonding strength and water resistance of starch-based wood adhesive improved by silica nanoparticles. Carbohydrate Polymers 86:72-76.
-Yang, H., Zhang, Q., Guo, M., Wang, C., Du, R. and Fu, Q., 2006. Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer 47:2106-15.