Document Type : Composite Wood Products

Authors

1 Faculty of Chemistry and Petrochemical Engineering, Department of Cellulosic Materials and Packaging, Standard Research Institute (SRI), Karaj, Iran

2 Department of Engineering Sciences, Technical and Vocational University (TVU), Tehran, Iran

Abstract

Background and objectives: Given the increasing use of nanocomposites in various industries, improving the mechanical and physical properties of these products is of particular importance. Nano calcium carbonate as an effective reinforcing agent can help improve the performance of poplar flour and recycled polypropylene nanocomposites. This research investigates the effect of the dosage of calcium carbonate nanoparticles in the nanocomposite mixturr on the mechanical properties of these nanocomposites. The main objective of this research is to evaluate the effects of the size and amount of nano-calcium carbonate on the modulus of elasticity, tensile strength, and other mechanical properties of nanocomposites. The results of this study can help develop lightweight and durable products in the packaging, automotive, and other industries, and provide a solution for the optimal use of recycled materials.
Methodology: For this purpose, polypropylene (at three levels of 50, 60, and 70%), poplar wood flour (at three levels of 30, 40, and 50%), nano calcium carbonate (at four levels of 0, 1, 2, and 3% by weight), and maleic anhydride grafted polypropylene at a fixed level of 3% were mixed using a twin-screw extruder, and standard test specimens were made using injection molding. Then, mechanical properties including tensile and bending strength, tensile and bending modulus, impact strength, and hardness were measured.
Results: The results related to the F-value and significance level showed that the effect of wood flour content on mechanical properties including tensile and bending strength, tensile and bending modulus, impact strength, and hardness was significant at a confidence level of 95%. Additionally, the effect of nano calcium carbonate on tensile and bending strength, bending modulus, and hardness was also significant at 95% confidence level, while bending modulus and impact resistance were not significant at this level. The interaction effect of flour amount and nano calcium carbonate was not significant on all strength at the 95% confidence level.
Conclusion: The results of this research show that increasing poplar wood flour from 30 to 50 percent has a significant effect on the mechanical properties of nanocomposites, especially increasing tensile and bending strength, tensile and bending modulus, and hardness. This improvement is due to increased adhesion and stress transfer between phases. However, increasing the amount of flour leads to a decrease in impact resistance and greater brittleness of the composite. Adding up to 3% by weight of nano calcium carbonate also improved the mechanical properties, but similar to flour, the impact resistance decreased. Overall, the appropriate selection of the type and number of additives can help improve the performance of nanocomposites, but it is also essential to pay attention to negative effects such as reduced impact resistance.

Keywords

Main Subjects

-Ahmadi, H., Hemmasi, A. H., and Mahdavi, S., 2015. Investigation on mechanical properties of HDPE recycled composite filled by furfural residue produced from bagasse. Iranian Journal of Wood and Paper Science Research, 30(3): 376-387. In Persian, DOI: https://doi.org/10.22092/ijwpr.2015.13004
-Arjmandi, R., Hassan, A., Majeed, K., and Zakaria, Z., 2015. Rice husk filled polymer composites. International Journal of Polymer Science, (1): 501471. DOI: https://doi.org/10.1155 /2015/501471
-ASTM D638. 2010. Tensile properties of plastics, ASTM International, West Conshohocken, USA.
-ASTM D790. 2010. Flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, USA.
-ASTM D256. 2010. Determining the Izod pendulum impact resistance of plastics, ASTM International, West Conshohocken, USA.
-ASTM D2240. 2010. Rubber property-durometer (Shore) hardness, ASTM International, West Conshohocken, USA.
-ASTM D3641. 2012. Injection molding test specimens of thermoplastic molding and extrusion materials, ASTM International, West Conshohocken, USA.
-Bahlouli, S., Belaadi, A., Makhlouf, A., Alshahrani, H., Khan, M.K. and Jawaid, M., 2023. Effect of fiber loading on thermal properties of cellulosic washingtonia reinforced HDPE biocomposites. Polymers, 15(13): 2910. DOI: https://doi.org/10.3390/polym15132910
-Balla, V.K., Kate, K.H., Satyavolu, J., Singh, P. and Tadimeti, J.G.D., 2019. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 174: 106956. DOI: https://doi.org/ 10.1016/j.compositesb.2019.106956
-Brebu, M. 2020. Environmental degradation of plastic composites with natural fillers—a review. Polymers, 12(1): 166. DOI: https://doi.org /10.3390/polym12010166
-Durukan, S. N., Beylergil, B. and Dulgerbaki, C., 2023. Effects of silane‐modified nano‐CaCO3 particles on the mechanical properties of carbon fiber/epoxy (CF/EP) composites. Polymer Composites, 44(3): 1805-1821. DOI: https://doi.org/10.1002/pc. 27206
-Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M. and Garnier, C., 2023. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 19: 101271. DOI: https://doi.org/10.1016/j.rineng. 2023.101271
-He, H., Li, K., Wang, J., Sun, G., Li, Y. and Wang, J., 2011. Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Materials & Design, 32(8-9): 4521-4527. DOI: https://doi.org/ 10.1016/j.matdes. 2011.03.026
-Hossain, M.T., Shahid, M.A., Mahmud, N., Habib, A., Rana, M.M., Khan, S.A. & Hossain, M.D., 2024. Research and application of polypropylene: a review. Discover Nano, 19(1), 2. DOI: https:// doi.org/10.1186/s11671-023-03952-z
-Jahromi, G., Andalibizade, B. and Vossough, S., 2010. Engineering Properties of Nanoclay Modified Asphalt Concrete Mixtures. The Arabian Journal for Science and Engineering, 35(1), 89-103.
-Kiss A., Fekete E. and Pukanszky B., 2007. Aggregation of CaCO3 Particles in PP Composites:Effect of Surface Coating, Composites Science and Technology, 67: pp. 1574-1583. DOI: https://doi.org/10.1016/j. compscitech. 2006.07.010
-Khakifirouz, A., Samariha, A., Karbaschi, A., Benakachi, M.A. and Beigloo, J.G., 2019. Nanoclay’s influence on mechanical and thermal properties of a polypropylene/poplar wood flour nanocomposite. BioResources, 14(4): 8267-8277.
-Kuan, H.T.N., Tan, M.Y., Shen, Y. and Yahya, M.Y., 2021. Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review. Composites and Advanced Materials, 30: 26349833211007502. DOI: https://doi.org/10.1177 /26349833211007502
-Lopez-Ramirez, R., Flores-Vazquez, A.L., Castrejon-Sanchez, V., Tellez-Jurado, L., Dorantes-Rosales, H.J. and Soriano-Vargas, O., 2023. Study of mechanical, thermal, and microstructural properties of polypropylene/ceramic waste composites. Materials Science, 29(2): 224-233. DOI: https://doi.org/10.5755/j02.ms.30947
-Maurya, S.D., Purushothaman, M., Krishnan, P.S.G. and Nayak, S.K., 2014. Effect of nano-calcium carbonate content on the properties of poly (urethane methacrylate) nanocomposites. Journal of Thermoplastic Composite Materials, 27(12), 1711-1727. DOI: https://doi.org/10.1177/08927057 1247 5011
-Mirzaei, J., Fereidoon, A. and Ghasemi-Ghalebahman, A., 2021. Experimental study on mechanical properties of polypropylene nanocomposites reinforced with a hybrid graphene/PP-g-MA/kenaf fiber by response surface methodology. Journal of Elastomers & Plastics, 53(8), 1063-1089. DOI: https://doi.org/10.1177/00952443211015362
-Nandi, P. and Das, D., 2022. Mechanical, thermo-mechanical and biodegradation behaviors of green-composites prepared from woven structural nettle (Girardinia diversifolia) reinforcement and poly (lactic acid) fibers. Industrial Crops and Products, 175: 114247. DOI: https://doi.org/10. 1016 /j.indcrop.2021.114247
-Nikmatin, S., Syafiuddin, A., Hong Kueh, A.B. and Maddu, A., 2017. Physical, thermal, and mechanical properties of polypropylene composites filled with rattan nanoparticles. Journal of applied research and technology, 15(4): 386-395. DOI: https://doi.org/ 10.1016/j.jart.2017.03.008
-Núñez-Decap, M., Wechsler-Pizarro, A. and Vidal-Vega, M., 2021. Mechanical, physical, thermal and morphological properties of polypropylene composite materials developed with particles of peach and cherry stones. Sustainable Materials and Technologies, 29: e00300. DOI: https://doi.org/ 10.1016/j.susmat.2021.e00300
-Rao, J., Zhou, Y. and Fan, M., 2018. Revealing the interface structure and bonding mechanism of coupling agent treated WPC. Polymers, 10(3): 266. DOI: https://doi.org/10.3390/polym10030266
-Samariha, A., Hemmasi, A.H., Ghasemi, I., Bazyar, B. and Nemati, M., 2015. Effect of nanoclay contents on properties, of bagasse flour/reprocessed high density polyethylene/nanoclay composites. Maderas. Ciencia y tecnología, 17(3): 637-646. DOI: http://dx.doi.org/ 10.4067/S0718-221X201500 5 000056
-Sanvezzo, P.B. and Branciforti, M.C., 2021. Recycling of industrial waste based on jute fiber-polypropylene: Manufacture of sustainable fiber-reinforced polymer composites and their characterization before and after accelerated aging. Industrial Crops and Products, 168: 113568. DOI: https://doi.org/ 10. 1016/j.indcrop.2021.113568
 
-Tan, W.L., Ahmad, A.L., Leo, C.P. and Lam, S. S., 2020. A critical review to bridge the gaps between carbon capture, storage and use of CaCO3. Journal of CO2 Utilization, 42: 101333. DOI: https://doi.org/ 10.1016/j.jcou.2020.101333
-Wang, C., Xian, Y., Cheng, H., Li, W. and Zhang, S., 2015.  Tensile properties of bamboo fiber-reinforced polypropylene composites modified by impregnation with calcium carbonate nanoparticles, BioRes. 10(4): 6783-6796.
-Wang, C., Wang, S., Cheng, H., Xian, Y. and Zhang, S., 2017. Mechanical properties and prediction for nanocalcium carbonate-treated bamboo fiber/high-density polyethylene composites. Journal of Materials Science, 52: 11482-11495. DOI: https://doi.org/10.1007/s10853-017-1285-1
-Wang, C., Cai, L., Shi, S.Q., Wang, G., Cheng, H. and Zhang, S., 2019. Thermal and flammable properties of bamboo pulp fiber/high-density polyethylene composites: Influence of preparation technology, nano calcium carbonate and fiber content. Renewable Energy, 134, 436-445. DOI: https://doi.org/ 10.1016/ j.renene.2018.09.051
-Wang, C., Wei, X., Smith, L.M., Wang, G., Zhang, S. and Cheng, H., 2022. Mechanical and rheological properties of bamboo pulp fiber reinforced high density polyethylene composites: influence of nano CaCO3 treatment and manufacturing process with different pressure ratings. Journal of Renewable Materials, 10(7): 1829. DOI: 10.32604/jrm. 2022. 018782
-Xu, B.H., Yu, K.B., Wu, H.C. and Bouchaïr, A., 2022. Mechanical properties and engineering application potential of the densified poplar. Wood Material Science & Engineering, 17(6), 659-667. DOI: https://doi.org/10.1080/17480272.2021.1924857