Composite wood products
Akbar Mastouri; Davood Efhamisisi; Asghar Tarmian; AliReza Gholinezhad-Pirbazari; Mohamad Azad fallah
Abstract
Background and objectives: Surface modification and coating is one of the effective methods to increase the performance and service life of wooden structures. All kinds of super-hydrophobic techniques with a contact angle above 150 degrees and a sliding angle less than 10 degrees, in addition to creating ...
Read More
Background and objectives: Surface modification and coating is one of the effective methods to increase the performance and service life of wooden structures. All kinds of super-hydrophobic techniques with a contact angle above 150 degrees and a sliding angle less than 10 degrees, in addition to creating high hydrophobicity, also improve the antimicrobial and other surface properties of the substrate. Nevertheless, resistance to mechanical and moisture damage are very important in connection with super-hydrophobic surfaces. Natural waxes are one of the efficient and healthy materials for creating a durable super-hydrophobic coating with high biocompatibility. In this research, nano-silica modified with non-fluorine alkyl materials in the presence of epoxy resin has been used to create superhydrophobic surfaces of birch wood (Betula pendula). Also, carnauba wax has been used to improve water repellency, self-cleaning property and durability in conditions of mechanical damage, humidity and harsh environments, comparatively.Materials and methods: Dodecyltrichlorosilane was used in the presence of toluene solvent for functionalizing and hydrophobicizing silica nanoparticles. A formulation containing 2% of modified nano silica and some epoxy resin was used by spray method to fabricate super-hydrophobic coating on birch wood. Also, the optimal amount of vegetable carnauba wax (Brazilian palm) was used as a reinforcing agent to make the nanohybrid formulation. Durability and stability to mechanical damage (sandpaper abrasion, water impact) and harsh environments (acidic, alkaline, ultraviolet rays and solvents) were investigated. Finally, the self-cleaning potential of the processed wooden surfaces was evaluated by qualitative (inclined surface) and quantitative (dropping) methods using edible liquids.Results: Both types of nanocomposite (without wax) and nanohybrid (containing wax) coatings caused the super-hydrophobicity on birch wood. The adding the optimal amount of carnauba wax to the epoxy-based nanocoating structure leads to a contact angle of 170 degrees and a sliding angle of less than 3 degrees by water drops. In addition, carnauba wax caused the stability and strength of superhydrophobic surfaces in aging and mechanical conditions. The highest level of stability in harsh environments was related to the hybrid nanocoating. The highest contact angle was observed for pomegranate juice and the lowest for milk. Also, the self-cleaning potential with various types of Fanta and Coca-Cola drinks on the superhydrophobic surface was successful.Conclusion: The use of carnauba wax increased the contact angle and decreased the sliding angle. The use of carnauba wax significantly improved the mechanical properties and water-repellency of the super-hydrophobic coating. The chemical nature and morphological structure of wax in the coating is the reason for this superiority. The super-hydrophobic surface made with nanohybrid coating in the presence of carnauba wax has the potential of self-cleaning, biocompatibility and stability in service conditions and can be used to protect all types of general surfaces in the field of food, especially lignocellulosic substrates such as wood and paper.
Wood Modification and Wood Preservation
Atiye Sadat Mousavi-Sangdehi; Reza Oladi; Davood Efhamisisi; Maliheh Akhtari
Abstract
Biological protection is one of the rather new and environmentally friendly methods of wood protection, in which living microorganisms have replaced chemical substances. This research was carried out with the aim of investigating the biological protection of beech wood against the white rot fungus (Trametes ...
Read More
Biological protection is one of the rather new and environmentally friendly methods of wood protection, in which living microorganisms have replaced chemical substances. This research was carried out with the aim of investigating the biological protection of beech wood against the white rot fungus (Trametes versicolor) using Trichoderma harzianum. For this purpose, the antagonistic ability of Trichoderma against wood rotting fungus was evaluated in dual culture medium as well as on wood. Trichoderma was incubated on wood samples in two time periods of four and eight weeks, and then samples were exposed to white rot for 16 weeks. The dual culture test proved the antagonism of Trichoderma against wood-destroying fungi, in a way that after 14 days, Trichoderma had not only prevented the spread of T. versicolor hyphae, but also overgrew on its mycelia. Cellulase enzyme assay showed that this isolate of Trichoderma had little ability to secrete this enzyme, and for that reason, sample weight loss due to fungal treatment was neglectable; a result that was also confirmed by infrared spectroscopy. The duration of wood incubation with Trichoderma was an important factor in the efficiency of treatment: increasing the time by one month significantly reduced weight loss of treated samples from 15% to below 1%, while the weight loss of the control samples was more than 30%. It can be concluded that the long-term treatment of beech wood with Trichoderma does not have a destructive effect on the wood and protects it against the white rot. Therefore, it is suggested to use this type of biological agent as a pretreatment of beech wood or to combine it with other preservative materials.
Afsaneh Topa; Atamalek Ghorbanzadeh; Davood Efhamisisi
Abstract
The plasma has different effects on the surface wettability of wood, depending on the treatment conditions and the type of gas used. The hdrocarbon gases usually destroy hydrophilic groups on the surface of wood and cause hydrophobicity by creating microscopic rough structures. In this study, glide plasma ...
Read More
The plasma has different effects on the surface wettability of wood, depending on the treatment conditions and the type of gas used. The hdrocarbon gases usually destroy hydrophilic groups on the surface of wood and cause hydrophobicity by creating microscopic rough structures. In this study, glide plasma treatment with methane was used to hydrophilize the surface of the wood and create weathering resistanc. The poplar wood (Populus deltoides) were exposed to glide plasma under various laboratory conditions such as time of exposure, voltage, frequency, distance between electrodes as well as flow of inlet gas and outlet gas with methane inside a reactor. Then the surface properties of wood were studied using scanning electron microscope (SEM), measurement of water drop contact angle, ATR‐FTIR spectroscopy, roughness survey, and colorimetry. The specimens were then subjected to the accelerated weathering using the Gardner weathering wheel and their properties were checked again. The SEM images showed that the plasma creates a warty layer on the surface of the wood which could be due to the deposition of new materials or the physical effects of plasma (surface etching). The plasma treatment significantly increased the contact angle of the water droplet on the surface of the treated samples. The treated samples had a higher surface roughness than the control samples. The surface of treated samples was generally darker than the control. After exposure to the accelerated weathering, the effect of treatments on surface hydrophobicity was largely lost. The treated samples had less roughness changes than the control after exposure to the weathering, and also their dark color changed to silver-gray. The use of glide plasma with methane gas showed the great potential for creating hydrophobic surfaces on the wood, but it did not last long and lost its effectiveness due to weathering.
soheila izadyar; Roghayeh Hamzezadeh; Davood Efhamisisi
Abstract
The aim of this study was to investigate the effect of poplar wood saturation with nano-wollastonite and nano-wollastonite-styrene mixture on fire resistance and mechanical properties of polymer wood. Populus deltoids with 4% nano-wollastonite and 75% methanolic solution of styrene monomer was saturated ...
Read More
The aim of this study was to investigate the effect of poplar wood saturation with nano-wollastonite and nano-wollastonite-styrene mixture on fire resistance and mechanical properties of polymer wood. Populus deltoids with 4% nano-wollastonite and 75% methanolic solution of styrene monomer was saturated by vacuum-pressure method. Four different wood treatments with nano-wollastonite, styrene, simultaneous nano-wollastonite and styrene (one-step) by 1:1 ratio and finally, the initial wood saturation by nano-wollastonite and then styrene (two-stage treatment) were investigated. In this study, the fire resistance and mechanical properties of the specimens were investigated. The results showed that the weight loss of wood against fire in two-stage treatment (NW+St) was 61.38% and in one-stage treatment (NW/St) was 69.68% better than control. NW/St treatment flame durability was approximately equal to NW treatment and improved by 30% compared to control. The reduction of carbonized area in two-stage (NW+St) and one-stage (NW/St) treatments was 28.53% and 29.06%, respectively, which showed a significant decrease. The results of mechanical tests showed that the NW/St treatment had the highest value due to the presence of condensing material in parallel to the NW/St treatment which showed an increase of 57.41% compared to the control sample. The modulus of elasticity and disruption of NW/St treatment increased by 26.77% and 35.71%, respectively. In addition, resistance to hardness of NW/St treatment increased by 10.07% compared to control. Overall, it can be concluded that mixing nano-wollastonite with styrene, while increasing the polymer wood fire resistance, also improved the mechanical properties of the polymer wood.
Farhod Firouzbehi; Davood Efhamisisi; Yahya Hamzeh; asghar tarmian; Reza Oladi
Abstract
Pyrolysis acid or wood vinegar is a dark liquid derived from the condensation of steam and smoke emitted by thermal pyrolysis of wood or any other lignocellulosic material. In this study, a heating furnace was first designed to allow a precise temperature-time program. The wood from three ...
Read More
Pyrolysis acid or wood vinegar is a dark liquid derived from the condensation of steam and smoke emitted by thermal pyrolysis of wood or any other lignocellulosic material. In this study, a heating furnace was first designed to allow a precise temperature-time program. The wood from three different species including oak, citrus and cypress were pyrolyzed under a specific temperature-time schedule. The smoke emitted from the furnace were cooled and condensed in a 20 m pipe using the flow of cold water, and then was dumped in a container as liquid. Pyrolysis was performed at three different temperature ranges of 200, 260 and 330 ° C. The obtained pyrolysis acids had different color and acidity depending on the temperature and species of wood used. Under the heating conditions used in this study, cypress had lower pyrolysis rate than hardwoods. The weight percentage gain of the treated beech and pine wood varied from 5 to 35%, which was depended to the wood species for treatment, the temperature as well as the wood used for pyrolysis. Acid pyrolysis at higher temperatures resulted in higher weight percentage gain. The acid pyrolysis obtained at lower temperature was leached at higher rates from treated wood. Also the wood types used for pyrolysis had significant effect on the amount of lechant from treated woods.
Management and Economics wood
Seyed Mahmoud Miri Tari; asghar tarmian; Mohammad Azadfallah; Abdolkhani Ali; Davood Efhamisisi
Abstract
DOR:98.1000/1735-0913.1398.34.45.66.1.1575.1575 Mold growth resistance of Polyurethane and Diotrol coatings containing natural (Thyme essential oil) and synthetic (IPBC) fungicides in both free and microencapsulated forms was studied. Polymethyl methacrylate (PMMA) microcapsules were prepared using solvent ...
Read More
DOR:98.1000/1735-0913.1398.34.45.66.1.1575.1575 Mold growth resistance of Polyurethane and Diotrol coatings containing natural (Thyme essential oil) and synthetic (IPBC) fungicides in both free and microencapsulated forms was studied. Polymethyl methacrylate (PMMA) microcapsules were prepared using solvent evaporation method by means of oil emulsion formation in water. Mold growth resistance against Aspergillus niger was determined by Filter Paper Disc method before and after aging process according to ASTM D 5590 Standard. Adhesion strength and surface roughness of coated samples were also measured. Results revealed that biocide-free coatings cannot provide adequate protection against mold growth, and addition of biocides, especially IPBC, significantly improved the mold growth resistance. Even after the aging process, microencapsulated biocides were able to provide better protection against mold growth due to controlled-release mechanism and shielding-effect of polymeric shell. Although the surface roughness of polyurethane coating was increased by using of biocides in both forms, especially microencapsulated ones, its adhesion strength reduced.