Volume 39 (2024-2025)
Volume 38 (2023-2024)
Volume 37 (2022-2023)
Volume 36 (2021-2022)
Volume 35 (2020-2021)
Volume 34 (2019-2020)
Volume 33 (2018-2019)
Volume 32 (2017-2018)
Volume 31 (2016-2017)
Volume 30 (2015-2016)
Volume 29 (2014-2015)
Volume 28 (2013-2014)
Volume 27 (2012-2013)
Volume 26 (2011-2012)
Volume 25 (2010-2011)
Volume 24 (2009-2010)
Volume 23 (2008-2009)
Volume 22 (2007-2008)
Volume 21 (2006-2007)
Volume 20 (2005-2006)
Volume 19 (2004-2005)
Volume 18 (2003-2004)
Volume 17 (2002-2003)
Volume 16 (2002-2003)
Volume 15 (2001-2002)
Volume 14 (2001-2002)
Volume 13 (2001)
Volume 12 (2000-2001)
Volume 11 (2000-2001)
Volume 10 (2000-2001)
Volume 9 (2000)
Volume 8 (1999)
Volume 7 (1999)
Volume 6 (1998)
Volume 5 (1998)
Volume 4 (1997)
Volume 3 (1997)
Volume 2 (1996)
Volume 1 (1995)
Composite wood products
A mathematical model to predict particleboard properties using the GMDH-type neural network and genetic algorithm

Zahra Jahanilomer; Saeed Reza farrokhpayam; Mohammad Shamsian

Volume 29, Fall 3 , November 2014, , Pages 376-389

https://doi.org/10.22092/ijwpr.2014.6130

Abstract
  Abstract In this study, GMDH neural network based on genetic algorithm was used to predict the physical and mechanical properties of laboratory made particleboard. To predict the mechanical and physical properties of particleboard we used input parameters such as neural network including press closing ...  Read More

Composite wood products
An Intelligent Neural Networks System for Prediction of particleboard properties

Zahra Jahani lomer; Saeed Reza farrokhpayam; Mohammad Shamsian

Volume 29, Summer 2 , August 2014, , Pages 242-253

https://doi.org/10.22092/ijwpr.2014.5687

Abstract
  AbstracIn the past decade, artificial neural networks have been used as a powerful tool for modeling and prediction in many scientific fields. In this study, the feed-forward multilayer Perceptron (MLP) was utilized and trained by back propagation (BP) algorithm with Levenberg-Marquardt numerical optimization ...  Read More