-Asociacion Eespanol De Normaliacion (AENOR), 2001. Tableros derivados de lamadera. Muestreo, despiece e inspeccion. Parte 2: Control de la calidad en fabrica. Standard UNE-EN 326-2. Madrid, Espana.
-Cook, D. F., Chiu, C.C., 1997. Predicting the internal bond strength of particleboard, utilizing a radial basis function neural network. Eng. Appl. Artif. Intell. 10 (2), 171-177.
-Cook, D.F., Ragsdale, C.T. and Major, R.L., 2000. Combining a neural network with a genetic algorithm for process parameter optimization. England Application Artificialneural Intell. 13:391-396.
-Demuth, H., Beale, M., Hagan, M. 2002. Neural network toolbox user’s guide, Version 4. The Mathworks Inc., Natick, MA 01760, USA, 808 pp.
-Edwards PJ, Murray AF., Papadopoulos, G., Wallace AR., Barnard J. and Smith, G., 1999. The application of neural networks to the papermaking industry. IEEE Trans Neural Network. 10(6):1456–64.
-Esteban, F.G. Fernandez, P., Palacios, B. and Rodrigo, G., 2010. Use of ANN as a predictive method to determine moisture resistance of particle and fiber boards under cyclic testing conditions, (UNE-EN 321),Wood and Fiber Science, 42(3): 1-11.
-EN 317. 1993. Particleboard and Fiberboards. Determination of Swelling in Thickness after Immersion in Water.European Committee for Standardization, Brussels, Belgium.
-Faridah, S.I. and Nordin, A.B., 2012. Neural Network Modeling for Fiberboard Proper-ties Prediction, Wseas 13th Cimmacs, Latest Advances in Systems Science and Computational Intelligence. pp: 104-108.
-Faridah, S.I. Nordin, A.B. Noor Elaiza, A.K. and Ropandi, M., 2011. Optimizing Oil Palm Properties Using Neural Network, IEEE 3rd Data Mining and Optimiza-tion, pp: 271-175.
-Fernandez, G., Esteban, F., Palacios L.G., Navarro, P.N. and Conde, M., 2008. Prediction of standard particleboard mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model.Inv Agrar -Sist Recursos Forest, 17(2): 87-178.
-Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are
universal approximators. Neural Network 1989;2(5):359–66
-Karayiannis, N. B. and Venetsanopoulos A. N. 1993. Artificial Neural Networks: Learning Algorithms, Performance Evaluation and Applications, Kluwer Academic Publishers, Boston, USA.
-Kargarfard, A., Nourbakhsh, A.,Doosthosseini ,K. and Jahan-Latibari, A., 2007. effect of geometry of particle on physical and mechanical properties of particleboard produced from beech wood Pajouhesh and Sazandegi. No:77 pp: 59-67.
-Kelly, M.W., 1977. Critical literature review of relationships between processing parameters and physical properties of particleboard. Madison: USDA Forest Service Research Paper, FPL 10, Forest Products Laboratory, Wis 53705, USA. 70 pp.
-Krauss, G., Kindangen, J.I. and Depecker, P., 1997. Using artificial neural networks to predict interior velocity coefficients. Build Environ 4, 295-303.
-Kutner, M.H. Nachtsheim, C.J. and Neter, J. 2004. Applied linearregression models,4th ed. New York: McGraw-Hill/Irwin.
-Lin, H, C. and Huang J, C., 2004. Using Single Image Multi-Processing Analysis Techniques to Estimate the Internal Bond Strength of Particleboard. Taiwan J For Sci. 19(2): 109-17.
-Malinovs, SHA. W., Mckeown, J.J., 2001. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput Mater Sci. 21:375-394.
-Menhaj, M. B., 2006. Computational Intelligence (Vol. 1), Fundamentals of Neural Networks, AmirkabirUniversity Pub, Tehran, Iran (In Persian).
-Moghaddamnia, A., Ghafari, M., Piri, J., Amini, S. and Han, D., 2009. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources. 32 : 88-89.
-Moshiri, S. and Morovat, H., 2006. Forecasting of Tehran Stock Exchange General Index by Lineal and Nonlinear Methods. Commercial Research Journal. 41: 245-275.
-Noori, R., Karbassi, A. and Sabahi, M.S., 2009. Evaluation of PCA and gamma test techniques on AAN opration for weekly solid waste prediction, Journal of Enviromental Management, 91: 767-771.
-Ozsahin, S., 2012. ANN for Modeling MA and TS of OSB. 7(1): 1053-1067
-Ripely, B., Ripely, R. 1998.Neural Networks as Statistical Methods in Survival Analysis. Artificial Neural Networks:Prospects for Medicine (R. Dybowsky and V. Gant eds. 2007), Landes Biosciences Publishers, pp: 789.
-Samarasinghe, S., Kulasiri, D. and Jamieson, T., 2007. Neural networks for predicting fracture toughness of individual wood samples Silva Fennica, 41(1): 105-122.
-Sellers, T. 2000. Growing Markets for Engineered Products Spurs Research. J.Wood Sci. Technol., 127(3): 40-43.
-Sernek, M., F. A. Kamke, I. M., 2000. Influence of Temperature and Timeon the Curing of UF Adhesive. Wood Adhesive 2000 Extended Abstracts, Forest Products Society, Madison, WI, USA.
-Sha, W., Edwards, k. L., 2007. The use of artificial neural networks in materials science based research. Mater. Des. 6, 1747-1752.