Document Type : Research Paper

Authors

1 Department of Wood and Paper Science and Technology, Karaj Branch, Islamic Azad University, Karaj,

2 Wood and Forest Products Science Research Division, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO) P.O. Box 13185-116, Tehran, Iran

3 M. Sc. Students, College of Natural Resources, University of Tehran

Abstract

Fiber length, diameter and lumen diameter and its distribution is determined.   Five stalks were randomly selected and after cleaning, the internodes and nodes of each stalk were separated. Each part was depithed manually and then experimental samples were cut from these depithed parts.  Each sample was defibered according to procedure developed by Franklin, 1954. After defibration, fiber length, diameter and lumen diameter of 30 fibers were measured. Each stalk contained 10 nodes and internodes.
    Average fiber length of internodes and nodes were determined at 1.004 and 0.802 millimeter respectively.   The difference in averages of fiber length for different stalks, different heights in each stalk and between nodes and internodes were significant at 99% level.  Fiber length distribution curves for internodes, nodes and all fibers show uniform and symmetrical distribution and the highest points in distribution curves are all at similar fiber length. 
  Average fiber diameter for internodes and nodes were determined at 16.8 and 20.1 µm respectively which are significantly different at 99% level.  Fiber diameter distribution curves for nodes, internodes and all fibers also shows uniform and symmetrical shape, but the highest point for internodes is located at lower fiber diameter than nodes.  The average lumen diameter for internodes and nodes were measured at 9.42 and 12.7 respectively which is significantly different at 99% level. The distribution curves for lumen diameter is identical to fiber diameter.
   The results indicate that the fiber geometry of cornstalks is similar to hardwoods and other agricultural residues and it can be utilized for production of lower grade pulps such as fluting paper pulp.

Keywords

Main Subjects

احمدی، محمد. 1376؛ بررسی تهیه خمیر کاغذ نیمه‌شیمیایی سولفیت خنثی از ساقه کلزا. پایان‌نامه کارشناسی ارشد. دانشکده منابع طبیعی دانشگاه تهران.
حسینی، سیداحسان. 1383؛ بررسی امکان تهیه خمیر کاغذ از کاه گندم به روش سولفیت خنثی جهت تهیه کاغذ کنگره‌ای. پایان‌نامه کارشناسی ارشد. دانشکده منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس.
روح‌نیا، مهران. 1377؛ تولید خمیر کاغذ از پوست دانه آفتابگردان به روش سودا. پایان‌نامه کارشناسی ارشد. دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
رودی، حمیدرضا. 1380؛ بررسی تولید خمیرکاغذ نیمه‌شیمیایی سولفیت خنثی از ساقه آفتابگردان و ارزیابی آن به منظور تولید کاغذ کنگره‌ای در صنایع چوب و کاغذ مازندران. پایان‌نامه کارشناسی ارشد. دانشکده منابع طبیعی و علوم دریایی نور؛ دانشگاه تربیت مدرس.
شکوئی، مژگان. 1376؛ بررسی مقایسه‌ای کاربرد دو فرآیند سودا و کرافت در پخت ساقه پنبه. پایان‌نامه کارشناسی ارشد. دانشگاه علوم کشاورزی منابع طبیعی گرگان.
فامیلیان، حسین. 1373؛ بررسی مقایسه‌ای خصوصیات بیولوژیکی، آناتومیکی، فیزیکی و شیمیایی نی در نیزارهای هورالعظیم و تالاب انزلی. پایان‌نامه کارشناسی ارشد. دانشکده منابع طبیعی دانشگاه تهران.
کاشانی، پیمان. 1376؛ بررسی مقاومت‌های کاغذ ساخته شده از کاه گندم و کلش برنج به روش سودا. پایان‌نامه کارشناسی ارشد. دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
مهدوی فیض‌آبادی، سعید. 1373؛ بررسی تولید خمیر کاغذ از کاه گندم به روش حلال آلی. پایان‌نامه کارشناسی ارشد. دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
 Barefoot, A.C.; R.G. Hitchings; E.L. Ellwood; 1964. Wood characteristics and kraft paper properties of four selected loblolly pines. I. Effect of fiber morphology under identical cooking conditions. Tappi J. 47:343-356.
 Bernal-Salazer,S.; T. Terrazas; D. Alvarado; 2004. Impact of air pollution on ring width and tracheid dimensions in Abies religiosa in the Mexico City basin.  IAWA J. 25(2):205-215.
 Boyce, S.B.; M.Kaeiser; 1961. Environmental and genetic variability in the length of fibers of eastern ctttonwood.  Tappi J. 44:364-368.
Broderick,G.;J. Paris;J.L. Valade; J.Wood. 1996. Linking of fiber characteristics and handsheet Properties of a high yield pulp.  Tappi J. 79:161-169.
 Franklin, G.L. 1954. A rapid method of softening wood for anatomical. Analysis. Tropical Woods 88:35-36.
 Goyal,G.C.; J.J. Fisher; M.J. Krohn; R.E. Packwood; J.R. Olson. 1999. Variability in pulping and fiber characteristics of hybrid poplar trees due to their genetic make-up, environmental factors and tree  age.  Tappi J.  82:141-147.
 Hannrup,B. ;O. Danell; I. Ekberg; M. Moell. 2001. Relationship between density and tracheid dimensions in Pinus sylvestris L.   Wood Fiber Sci. 33:173-181.
 Honjo,K.; I. Furukawa; M.H. Sabri; 2005. Radial variation of fiber length increment in Acacia mangium.   IAWA J. 26(3):339-352.
 Hosseiny, E.; D. Anderson. 1999. Effect of fiber length and coarseness on the burst strength of Paper.  Tappi J. 82:202-203.
 Igartua,D.V.; S.E. Monteoliva; M.G. Monterubbianesi; M.S. Villegas. 2003. Basic density and fiber length at breast height of Eucalyptus globules spp. globules for parameter prediction of the whole tree.  IAWA J. 24(2):173-184.
 Kibblewhite, R.P.; R. Evans. 2001. Dimensional relationships among radiata pine wood tracheid and chemical and TMP pulp fibers.  Appita J. 54:297-303.
 Koubaa, A.; R.E. Hernandez; M. Beaudoin; J. Poliquin. 1998. Interclonal, intraclonal and within tree variation in fiber length of poplar hybrid clones.  Wood Fiber Sci. 30:40-47.
 Leal,S.; H. Pereira; M. Grabner; R. Wimmer. 2003. Clonal and site variation of vessels in 7 years old Eucalyptus  globules.  IAWA J. 24:185-195.
 McGovern, J.N.; D.E. Coffelt; A. M. Hueter; N.K. Ahuja; A. Wiedermann. 1987. Cottonstalk In pulp and paper manufacture. Vol. 3. Secondary fibers and non-wood pulping. pp;110-121.               F. Hamilton and B. Leopald eds. Tappi press Atlanta, Ga.
 Monteoliva, S.; G. Senisterra; R. Marlats. 2005.  Variation of wood density and fiber length in six willow clones ( Salix spp.). IAWA J. 26(2): 197-202.
 O’ Neill, P. 1999. Exploring data for relationship between wood, fiber and paper properties. Appita 52:358-362.
 Raymond,C.A.; P. Banham; A.C. Macdomald. 1998. Within tree variation and genetic control of basic density, fiber length and coarseness in Eucalyptus regnans in Tasmania. Appita 51:299-305.
 Via,B.K.; M. Stine; T.F. Shupe; G-L. So; L. Groom. 2004. Genetic improvement of fiber length and coarseness based on paper products performance and material variability: A review. IAWA J. 25(4): 401-414.