مقایسه تاثیر الیاف سلولزی و الیاف پشم سنگ بر مقاومت های مکانیکی و ضربه بالستیک نانوکامپوزیت اپوکسی-بنتونیت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی فناوری‌های نوین، دانشگاه شهید بهشتی، ایران

2 استادیار، دانشکده مهندسی فناوری‌های نوین، دانشگاه شهید بهشتی، ایران

چکیده

                                                                                               DOR:98.1000/1735-0913.1397.33.347.64.3.9.1578
امروزه پژوهش پیرامون کاربرد بهینه منابع طبیعی در تولید فراورده‌ها بجای منابع فسیلی و تجدیدناپذیر از اهمیت روزافزونی برخوردارست. منابع سلولزی به‌عنوان اتکای آتی فراورده‌های سبز و منابع معدنی به‌عنوان موادی فراوان، ارزان و دردسترس بویژه در ایران؛ گزینه‌های مناسبی برای تولید فراورده‌های متنوع هستند. بنابراین تاثیر کاربرد (25/0 و 5/0 درصد جرم کامپوزیت) الیاف سلولزی و پشم سنگ در حضور (1/0 و 2/0 درصد جرم کامپوزیت) و عدم حضور نانوبنتونیت بر ویژگی‌های متداول و ویژه کامپوزیت با بستر رزین اپوکسی بررسی گردید. ویژگی‌های مقاومت کششی (9/47 مگاپاسکال)، مدول گسیختگی (3/86 مگاپاسکال) و مدول الاستیسیته (2100 مگاپاسکال) کامپوزیت اپوکسی/الیاف معدنی و نیز نانوکامپوزیت اپوکسی/بنتونیت نسبت به کامپوزیت اپوکسی/الیاف سلولزی از برتری برخوردار بوده‌است. با این حال در کامپوزیت اپوکسی/الیاف سلولزی میزان جذب انرژی ضربه بالستیک بیشتر و مساحت تخریب‌شده ناشی از ضربه مزبور کمتر از کامپوزیت اپوکسی/الیاف معدنی بوده و حفاظت بیشتری از کامپوزیت در برابر ضربه بالستیک ایجاد گردید. ویژگی‌های کششی، گسیختگی و الاستیسیته تابع نوع و میزان کاربرد تلفیقی نانوبنتونیت و الیاف طبیعی در کامپوزیت بوده و بطور کلی الیاف معدنی موفق‌تر از الیاف سلولزی در ماتریس اپوکسی/نانوبنتونیت عمل نموده‌است. در نقطه مقابل، انرژی ضربه بالستیک جذب‌شده توسط کامپوزیت و نیز مساحت تخریب‌شده، در نانوکامپوزیت‌های الیاف سلولزی موفق‌تر از الیاف معدنی بوده‌است. بنحویکه بیشترین مقادیر مشاهده‌شده انرژی جنبشی جذب‌شده (7/60 ژول) و کمترین سطح تخریب‌شده (7/10 سانتیمترمربع)، از کاربرد بالاترین سطح الیاف سلولزی (%5/0) و نانوبنتونیت (%2/0) بدست‌آمد.

کلیدواژه‌ها

موضوعات


-Babu, T.N., 2016. A review on mechanical and tribological properties of epoxy resin, SiO2, TiO2, BaSO4, Al2O3, CaO, MgO, K2O, Na2O, Fe2O3 reinforced with basalt fibers.  International Journal of Chem. Tech. Research, 9(4): 131-139.‏

-Chan, M.L., Lau, K.T., Wong, T.T. and Cardona, F., 2011a. Interfacial bonding characteristic of nanoclay/polymer composites. Applied Surface Science, 258(2): 860-864.

-Chan, M.L., Lau, K.T., Wong, T.T., Ho, M.P. and Hui, D., 2011b. Mechanism of reinforcement in a nanoclay/polymer composite. Composites Part B: Engineering, 42(6): 1708-1712.

-Gurunathan, T., Mohanty, S. and Nayak, S. K., 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77: 1-25.

-Haque, A., shamsuzzoha, M. and Dean, D., 2003. S2-glass/epoxy polymer Nano composites: manufacturing, structures, thermal and mechanical properties. Journal of composite materials, 37(20): 1821-1837.

-Ho, M.W., Lam, C.K., Kau, K.T., Ng, D.H.L. and Hui, D., 2006. Mechanical properties of epoxy based composites using nano clays.  Composites Structures, 75(3): 415-421.

-Joshi, S.V., Drzal, L.T., Mohanty, A.K. and Arora, S., 2004. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied science and manufacturing, 35(3): 371-376.

-Lui, A., Talbot, F.D.F., Fouda, A., Matsuura, T. and Sourirajan, S., 1988. Studies on the solvent exchange technique for making dry cellulose acetate membranes for the separation of gaseous mixtures. Journal of applied polymer science, 36(8): 1809-1820.‏

-Masoodi, R., El-Hajjar, R., Pillai, K. and Sabo, R., 2012. Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Materials & Design (1980-2015), 36, 570-576.

-Moallemzadeh, A.R., Sabet, A.R. and Abedini, H., 2017. Mechanical and morphological study of polymer composite plates having different fiber surface treatments with particular response to high velocity projectile impact. Iranian Polymer Journal, 26(3): 229-238.

-Joshi, M. and Chatterjee, U., 2016. Polymer nanocomposite: An advanced material for aerospace applications. In Advanced Composite Materials for Aerospace Engineering (pp. 241-264).‏

-Mottershead, B. and Eichhorn, S.J., 2007. Deformation micromechanics of model regenerated cellulose fibre-epoxy/polyester composites. Compos. Sci. Technol., 67(10): 2150–9.

-Nascimento, D.C.O., Lopes, F.P.D. and Monteiro, S.N., 2010. Tensile behavior of lignocellulosic fiber reinforced polymer composites. Part I piassava/epoxy, Matéria (Rio de Janeiro), 15(2): 189-194.

‏-Ngo, T.D., Ton-That, M.T., Hoa, S. and Cole, K., 2008. Reinforcing effect of organoclay in rubbery and glass epoxy resins, part 1: Dispersion and properties. Journal of Applied Science, 107(2): 1154-1162.

-Pandya, K.S., Pothnis, J.R., Ravikumar, G. and Naik, N.K., 2013. Ballistic impact behavior of hybrid composites. Materials & Design, 44: 128-135.

-Park, J.M., Shin, W.G. and Yoon, D.J., 1999. A study of interfacial aspects of epoxy-based composites reinforced with dual basalt and SiC fibres by means of the fragmentation and acoustic emission techniques. Composites science and technology, 59(3): 355-370.

-Rana, S. and Fangueiro, R., 2016. Advanced composite materials for aerospace engineering: Processing, properties and applications. Woodhead Publishing, 496p.

-Saba, N., Mohammad, F., Pervaiz, M., Jawaid, M., Alothman, O.Y. and Sain, M., 2017. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites.  International journal of biological macromolecules, 97: 190-200.

-Sarasini, F., Tirillò, J., Valente, M., Valente, T., Cioffi, S., Iannace, S. and Sorrentino, L. 2013. Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites. Composites Part A: Applied Science and Manufacturing, 47: 109-123.‏

-Talib, A.A., Abbud, L.H., Ali, A. and Mustapha, F., 2012. Ballistic impact performance of Kevlar-29 and Al2O3 powder/epoxy targets under high velocity impact. Materials & Design, 35: 12-19.

-Uddin, F., 2008. Clays, nanoclays and montmorillonite minerals. Metallurgical and Materials Transactions A, 39(12), 2804-2814.

-Xu, S., Girouard, N., Schueneman, G., Shofner, M.L. and Meredith, J.C., 2013. Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer, 54(24): 6589-6598.