بررسی چندسازه پلی لاکتیک اسید/ الیاف کاه گندم تیمار شده با سیلان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات ، گروه صنایع چوب و کاغذ.، تهران، ایران.

2 استادیار، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات ، گروه صنایع چوب و کاغذ.، تهران، ایران.

3 دانشیار، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات ، گروه صنایع چوب و کاغذ.، تهران، ایران.

4 دانشیار، گروه فرایند، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشگاه فرایند، تهران

چکیده

این مقاله چندسازه پلی لاکتیک اسید (PLA)/ الیاف کاه گندم ساخته شده بوسیله اکسترودر دو مارپیچ و قالبگیری تحت فشار مورد بررسی قرار گرفت. برای سازگاری بهتر بین دو فاز الیاف کاه گندم بوسیله تری اتوکسی متیل سیلان مورد تیمار قرار گرفتند. ویژگی‌های فیزیکی، ویژگی‌های کششی چندسازه‌ها مورد تجزیه و تحلیل قرار گرفت. هم‌چنین اثر الیاف کاه گندم بر روی ویژگی-های گرمایی PLA در آزمون گرماسنج پوبشی تفاضلی مورد بررسی قرار گرفت. تاثیرات تیمار سیلانی بر روی الیاف کاه گندم بوسیله FTIR مورد آنالیز قرار گرفت. تصاویر میکروسکوپ الکترونی پوبشی (SEM) از سطح نمونه‌ها برای مطالعه بهتر جذب آب و واکشیدگی به کار گرفته شده است. چندسازه الیاف کاه گندم تیمار شده کاهش معنی‌داری در جذب آب و واکشیدگی چندسازه PLA نسبت به چندسازه PLA/ الیاف کاه گندم بدون تیمار شده است. وجود ترک و شکاف بوجود آمده در سطح چندسازه PLA/ الیاف کاه گندم بدون تیمار پس از غوطه‌وری در آب نشان دهنده جذب آب و واکشیدگی ضخامت بالاتر این نمونه‌هاست. الیاف کاه گندم تیمار شده با سیلان بعلت ترپذیری بهتر و اتصالات بهتر در سطح مشترک با ماتریس PLA ویژگی‌های کششی بالاتری را نسبت به چندسازه PLA/ الیاف کاه گندم بدون تیمار نشان دادند. آزمون گرماسنج پوبشی تفاضلی نشان داد که با افزودن الیاف کاه گندم تیمار شده به PLA خالص دمای انتقال شیشه‌ای افزایش یافته است. هسته‌زایی الیاف کاه گندم بخصوص الیاف تیمار شده با سیلان باعث افزایش در دمای بلورینگی چندسازه نسبت به PLA خالص شده که تاثیر مثبتی بر درجه بلورینگی نشان شده است.

کلیدواژه‌ها

موضوعات


-Agrawal, R., Saxena, N., Sharma, K., Thomas, S., and Sreekala, M., 2000. activation energy and crystallization kinetics of untreated and treated oil palm fiber reinforced phenol formaldehyde composites. Material  Science Engineer A, 277: 77-82

-Albano, C., Papa, J., Ichazo, M., Gonzalez, J., and Ustariz, C., 2003. Application of different macro kinetic models to the isothermal crystallization of PP/talc blends. Composite Structure, 62: 291- 302

-Balasuriya, P., Ye, L., Mai, Y., and Wu, J., 2002. Mechanical properties of wood flake-polyethylene composites, II. Interface modification. Journal Applied Polymer Science, 83: 2505–2521

-Bhatnagar, N., and Srivatsan, T., 2009. Processing and Fabrication of Advanced Materials. International Publishing House, 5: 728-729

-Coutinho, F., Costa, T., and Carvalho, D., 1997. Polypropylene wood fiber composites: Effects of treatment and mixing conditions on mechanical properties. Journal of Applied Polymer Science, 65: 1227-1236

-English, B., and Falk, R., 1995. Factors That Affect the Application of Wood Fiber–Plastic Composites. Forest Products Society, Madison. P. 198

- European plastics, "Plastics – the Facts," 2010.

-Faruka, O., Bledzkia, A., Fink, H., and Sain, M., 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress In Polymer Science, 37:1552- 1596

-Febrianto, F., Yoshioka, M., Nagai, Y., Mihara, M., and Shiraishi, N., 2001. Composites for wood and trans-1,4-isoprene rubber II: processing conditions for production of the composites. Wood Science Technology, 35: 297–310

-Frone, A., Berlioz, S., Chailan, J., Panaitescu, D., and Donescu, D., 2011. Cellulose fiber reinforced poly lactic acid. Polymer Composites, 32: 976-985

-Huda, M., Mohanty, A., and Drzal, L., 2005. “Green” Composites from Recycled Cellulose and Poly (lactic acid): Physico-mechanical and Morphological Properties Evaluation. Journal of Material Science, 40: 422 –4229

-Herrera-Estrada, L., Pillay, S., and Vaidya, U., 2008. Banana Fiber Composites for Automotive and Transportation Applications Automotive. composites conference & exhibition. P.18

-Huda, M., Drzal, L., and Misra, M., 2005. A Study on Biocomposites from Recycled Newspaper Fiber and Poly(lactic acid), Industry Engineering Chemistry Resources, 44: 5593-5601

-Kalia, S., Kaith, B., and Kaur, I., 2009. Pretreatments of natural fibers and their application as reinforcing material in polymer composites- a review. Polymer Engineer Science, 49: 1253–1272,

-Lachazo, M., Albano, C., Ganzalez, J., Perea, R., and Canada, M., 2001. Polypropylene/wood flour composites: Treatment and properties. Composite Structure, 54: 207-214

 -Nyambo, C., Mohanty, A., and Misra, M., 2010. Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules, 11: 1654–1660,

-Pilla, S., Gong, S., and O'Neill, E., 2008.Polylactide-Pine Wood Flour Composites. Polymer Engineer and Science, 48: 578–587

-Puglia, D., Tomassucc,i A., and Kenny, J., 2003. Processing, properties and stability of biodegradable composites based on Mater-Biw and cellulose fibres. Polymer Advance Technology, 14: 749–756

-Raya, S., Yamadab, K., Okamotoa, M., and Ueda, K., 2003. Crystallization Behavior and Morphology of Biodegradable Polylactide/ Layered Silicate Nanocomposite. Polymer, 44: 857-866

-Rosa, D., Rodrigues, T., Guedes, C., and Calil, M., 2003. Effect of thermal aging on the biodegradation of PCL, PHBV and their blends with starch in soil compost. Journal Applied Polymer Science, 89: 3539–3546

-Shah H. Srinivasulu B. and Shit S., 2009. The Effect of Surface treatment on the Properties of Woven Banana Fabric based Unsaturated Polyester Resin Composites. International Journal of Scientific Engineering and Technology, 3: 86-90

-Shogren, R., Doane, W., Garlotta, D., Lawton, J., and Willett, J., 2003.Biodegradation of starch/polylactic acid/poly (hydroxyester-ether) composite bars in soil. Polymer Degradable Stability, 79: 405–411

-Shibata, M., Oyamada, S., Kobayashi, S., and Yaginuma, D., 2004. Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. Journal Applied Polymer Science, 92: 3857–3863

-Shibata, M., Ozawa, K., Teramoto, N., Yosomiya, R., and Takeishi, H., 2003. Biocomposites made from short Abaca fiber and biodegradable polyesters. Macromol Material Eng, 288, 35–43

-Song, Y., Liu, J., Chen, S., Zheng, Y., Ruan, S., and Bin, Y., 2013. Mechanical Properties of Poly (Lactic Acid)/Hemp Fiber Composites Prepared with a Novel Method. Journal Polymer Environmental, 4: 105-111

-Tawakkal, I., Talib, R., Khalina, A., Chin, N., and Ibrahim, M., 2010. Optimization of processing variables of kenaf derived cellulose reinforced poly lactic acid. Asian Journal of Chemistry, 22: 6652-6662

-Tee, y., Talib, R., Khalina, A., Chin, N., Basha, R., and Khairul, Y., 2013. thermally grafting aminosilane onto kenaf derived cellulose and its influence on the thermal properties of poly (lactic acid) properties. Bioresources, 8: 4468-4483

-Velasco, J., De Saja, J., and Martinez, A., 1996. Crystallization behavior of polypropylene filled with surface-modified talc. Journal of Applied Polymer Science, 61: 125–132

-Vink, E., Rabagob, K., Glassner, D., and Gruber, P., 2002. Applications of life cycle assessment to NatureWorksTM. Science Direct, 80, 403-419

-Zini, E., Baiardo, M., Armelao, L., and Scandola, M., 2004. Biodegradable polyesters reinforced with surface-modified vegetable fibers. Macromol Bioscience, 4: 286–295

 -Zhao, Y., Qiu, J., Feng, H., and Zhang, M., 2012. The interfacial modification of rice straw fiber reinforced poly (butylene succinate) composites: Effect of amino silane with different alkoxy groups. Journal Applied Polymer Science, 125: 3211-3220,