Composite wood products
Abolfazl Kargarfard; Amir nourbakhsh; Fardad Golbabaei
Abstract
The aim of this study has been utilization of recycled polyethylene in modification of physical and mechanical properties of particleboard. Therefore, three levels of resin consumption content ( 10, 7 and 4% ) and three levels of recycled polyethylene consumption content 5, 10 and 15% in surface layer ...
Read More
The aim of this study has been utilization of recycled polyethylene in modification of physical and mechanical properties of particleboard. Therefore, three levels of resin consumption content ( 10, 7 and 4% ) and three levels of recycled polyethylene consumption content 5, 10 and 15% in surface layer of mat, particleboards produced. Also in order to influence of these variables on physical and mechanical properties of produced boards, 3 particleboards with 10% resin content in surface layer and without polyethylene as control samples produced. The physical and mechanical properties of boards measured and analyzed. The results of this study indicated that with increasing of the recycled polyethylene consumption content, the MOR, MOE and thickness swelling of boards improved significantly and the produced boards with 15% recycled polyethylene in compare with control boards increased 59 and 53% respectively. Also the results revealed that the water absorption of boards decreased with increasing of increasing of recycled polyethylene consumption content, and the minimum of water absorption of boards observed in the produced boards with 15% recycled polyethylene. Based on the results of this research and with increasing of polymeric residues in the envirement , we conclude that the utilization of recycled polyethylene in particleboard production has different advantages.
Composite wood products
Abbas Tamjidi; Mohammad Mehdi Faezipour; Kazem Doosthoseini; Ghanbar Ebrahimi; Habibollah Khademieslam
Abstract
In this study, the effects of mat moisture content and press temperature on physical and mechanical properties of three layered oriented strand boards were evaluated. Two levels of mat moisture content 7% and 10% and three levels of press temperature 180 ˚c , 200 ˚c and 220 ˚c were applied and 12 ...
Read More
In this study, the effects of mat moisture content and press temperature on physical and mechanical properties of three layered oriented strand boards were evaluated. Two levels of mat moisture content 7% and 10% and three levels of press temperature 180 ˚c , 200 ˚c and 220 ˚c were applied and 12 mm in nominal thickness laboratory boards were made from mixture of three clones of ten-year-old hybrid poplar ( populous euramericana vernirubensis, p. e. I-214, P. e. 561/41) while the strands on the surface layers are aligned in the long direction of the board and the middle layer strands are cross aligned to the surface layers. In all treatments, board targeted density of 0/7 g/cm3 and press time of 8 min and phenol-formaldehyde resin (PF) content of 7% based on the oven dry weight of the strands were held constant. The mechanical and physical properties of the boards were measured as defined in relevant European standards EN 300 for OSB/1 and OSB/2. Overall results showed that all boards made from above mentioned conditions exceed the EN 300 standards for MOR, MOE, IB and TS24. The bending properties (MOR and MOE) of boards were significantly improved as the mat moisture content increased from 7 to 10%. The highest MOR was achieved at 10% mat moisture content and 220 ˚c press temperature and the highest MOE was achieved at 10% mat moisture content and 180 ˚c press temperature. The Modulus of Rupture (MOR) and Thickness swelling (TS24) were significantly improved as the press temperature increased from 180 ˚c to 220 ˚c. The lowest TS24 was achieved at 7% mat moisture content and 220 ˚c press temperature and the highest IB was achieved at 7% mat moisture content and 200 ˚c press temperature.
Composite wood products
Hossein Rangavar; Amir Nourbakhsh; Saeid Haji hatmlo
Abstract
The effects of nano-wollastonite on physical and mechanical properties of wood plastic composites made with dried sunflower stalks and alder wood flour, were studied. Five levels of sunflower stalk flour in ratio of the mass wood dry flour containing 0, 25, 50, 75 and 100 percent and nano-wollastonite ...
Read More
The effects of nano-wollastonite on physical and mechanical properties of wood plastic composites made with dried sunflower stalks and alder wood flour, were studied. Five levels of sunflower stalk flour in ratio of the mass wood dry flour containing 0, 25, 50, 75 and 100 percent and nano-wollastonite Powder in three levels, 3, and 5% were considered as variables of the study. Physical and mechanical properties, perpendicular to the screw strength, bending strength, modulus of elasticity, water absorption and thickness swelling after 2 and 24 soaking hours in water were measured in accordance with the standard DIN- EN. In order to examine the intersection of wood and polymer as well as distribution patterns of nanoparticles in the polymer matrix microscopic photos were taken. The results showed that by increasing of sunflower stalk flour in the mixing with wood flour up to 25% increased resistance to screw withdrawal and up to 50 percent increase in flexural strength and modulus of elasticity of wood-plastic composites, respectively. Sunflower stalk flour mixed with alder wood flour increased water absorption and thickness swelling after 2 and 24 hours immersion in water. The use of nano-wollastonite up 5% in relation to the total mass of all the boards improved the physical and mechanical properties of wood-polymer composite.
Composite wood products
Vahid Tazakor Rezaie; abdolah Najafi; Ahmad Sinaie
Abstract
In this study, effect of nano-wollastonite on fire resistance characteristics of wood flour/polypropylene composite was investigated. The composites samples were manufactured using a dry blend/hot press method. In this study, the dried wood flour of beech as the filler in a 60%, poly propylene as the ...
Read More
In this study, effect of nano-wollastonite on fire resistance characteristics of wood flour/polypropylene composite was investigated. The composites samples were manufactured using a dry blend/hot press method. In this study, the dried wood flour of beech as the filler in a 60%, poly propylene as the matrix in a 37% and polyethylene grafted with maleic anhydride as the coupling agent in a 3% total weight was used. Also, nano-wollastonite was used in four levels of dried wood flour loading (0, 1, 3 and 5%). Nominal density and dimensions of the composites were 1 g/cm3 and 1*20*25 cm, respectively.Bending strenght according to ASTM standard and Fire resistance characteristics such as, flammability duration, duration of flame after removing the burner, duration of glow after removing the burner and mass reduction were measured acceding to ISO 11925. Results indicated that by increasing the nano-wollastonite increases the bending strengh,MOE and flammability duration increased but mass reduction, duration of flame and duration of glow decreased. Also the dispersion of nano-wollastonite in composites was evaluated by Filed Emission Scanning Electron Microscopy (FE-SEM).
Composite wood products
Saeid Esmaeiliymoghadam; Amir Nourbakhsh; seyed mojtaba Seyedzadeh Otaghsaraei
Abstract
This study with aim of evaluation the Nano-silica and wood flour calcareous-treated and evaluation of properties of the wood plastic Nano composite obtained from it performed. For this purpose beginning, wood flour was treated by calcium hydroxide and then with weight ratio of 60 to 40 by Polypropylene ...
Read More
This study with aim of evaluation the Nano-silica and wood flour calcareous-treated and evaluation of properties of the wood plastic Nano composite obtained from it performed. For this purpose beginning, wood flour was treated by calcium hydroxide and then with weight ratio of 60 to 40 by Polypropylene with 4 per hundred compound (phc) MAPP compatibilizer in extruder machine were mixed. Beside, Nano silica with weight ratio of 0, 1, 3 and 5 phc was used. Wood plastic Nano composites were fabricated by injection molding technique. Fourier transform infrared spectroscopy was used from wood flour changes after chemical treatment and for morphological study of Nano composites from scanning electron microscopy and X-ray diffraction were used. Mechanical testes include bending (ASTM D790) and tensile (ASTM D638) and physical testes include water absorption and thickness swelling (ASTM D7031-11) on the samples was done. Results showed that by calcium hydroxide treatment, bending and tensile resistance were decreased but bending and tensile modulus were increased. Also with increasing the Nano silica up to specific range, the mechanical properties were improvement. Increase of Nano silica in untreated samples caused increasing of water absorption and in treated samples caused decreasing of water absorption. With increasing of Nano silica, thickness swelling in the samples was decrease. The results of infrared spectroscopy showed that after lime treatment No change has occurred in the absorption band related to the hydroxyl groups. Results of scanning electron microscopy showed that the needle-shaped crystals of calcium hydroxide formed calcium silicate crystals after addition the Nano silica too. As well as results of X-ray diffraction, confirmed calcium silicate crystals.
Composite wood products
Samira Brzali; Laya Jamalirad; Farshid Faraji; Sahab Hejazi
Abstract
In this research with the aim of using a natural component, renewable and environmentally friendly which is not environmental pollution, the physical and mechanical properties of plywood manufactured by populous with urea formaldehyde resin and silk cocoon were studied. For this purpose, silk cocoon ...
Read More
In this research with the aim of using a natural component, renewable and environmentally friendly which is not environmental pollution, the physical and mechanical properties of plywood manufactured by populous with urea formaldehyde resin and silk cocoon were studied. For this purpose, silk cocoon was used as filler and reinforcement for four levels of 0, 10, 20 and 30 percent according to dry weight of urea formaldehyde resin. The physical and mechanical properties of samples including water absorption and thickness swelling after 2 and 24 hours immersion in water, bending strength parallel and perpendicular to the surface layer grain and shear strength were measured. The results show that increasing the amount of silk cocoon, decreased water absorption and thickness swelling after 2 and 24 hours immersion in water and increased bending strength parallel and perpendicular to the surface layer grain and shear strength. So that, using 30 percent of silk cocoon, dimensional stability, bending strength and shear strength, were improved.
Composite wood products
Abolfazl Kargarfard; Amir Nourbakhsh
Abstract
AbstractThe objective of the present study was the utilization of cotton stalk residues for medium density fiberboard production. MDF was produced applying Three press temperatures (170, 180, and 190 oC ) and three pressing times (3,4 and 5 minutes) were used to produce medium density fiberboard (MDF) ...
Read More
AbstractThe objective of the present study was the utilization of cotton stalk residues for medium density fiberboard production. MDF was produced applying Three press temperatures (170, 180, and 190 oC ) and three pressing times (3,4 and 5 minutes) were used to produce medium density fiberboard (MDF) from cotton stalks fibers. The properties of the laboratory boards were measured and the results are analyzed applying factorial experiment and randomized design. In case, the statistical difference was observed between the averages, then Duncan Multiple Range Test was used for grouping the averages. The results showed that as either press temperature or press time is increased, the modulus of rupture of the of the boards was significantly improved and the highest value was reached when 190 oC press temperature and 5 minutes press time was applied. The internal bonding of the boards was significantly higher when 180 oC press temperature was applied. The effect of press temperature on thickness swelling after 2 and 24 hours immersion in water was statistically significant and the lowest values were obtained when 190 oC press temperature was used. The results of this study indicated that the cotton stalks can be considered as a potential raw material for medium density fiberboard production and the properties of the boards meets the EN requirements.
Composite wood products
ghasem asadpour; seyyed majid zabihzadeh; Maryam Ghorbani; mahmoud davoudi
Abstract
Current research was conducted to investigate the effect of thermal modification on practical properties of horn beam bark flour-polypropylene composites. Wood plastic composites were divided in two levels of control and thermal modification, both levels included of 4 groups in bark fillers; 10, 20, ...
Read More
Current research was conducted to investigate the effect of thermal modification on practical properties of horn beam bark flour-polypropylene composites. Wood plastic composites were divided in two levels of control and thermal modification, both levels included of 4 groups in bark fillers; 10, 20, 30 and 40%. Test samples prepared with maleic anhydride-grafted polypropylene as coupling agent by injection molding method. According to the results, bark flour increased water absorption, tensile and bending modulus. High proportion of bark fillers declined mechanical strength. Thermal modification significantly improved physical and mechanical properties of composite. Using lignocellulosic material flour bark hornbeam, tensile modulus and flexural modulus of composite material background had the highest improvement. In comparison between mechanical properties, impact resistance by adding flour bark had the greatest decrease. Thermal modification by increasing the crystallity, hemicellulose degradation, loss of polarity, increased compatibility between the two phases and uniform distribution of bark fillers in polymers, increased mechanical resistance.
Composite wood products
mowhammad madadi; Amir Nourbakhsh
Abstract
AbstractIn this research, utilization of ZnO nanoparticles and eggshell powder on physical and mechanical properties of polypropylene/wood flour composite were investigated. For this purpose, wood flour and polypropylene was mixed at 60 to 40% by weight. Eggshell powder at three levels (0, 5 and 10) ...
Read More
AbstractIn this research, utilization of ZnO nanoparticles and eggshell powder on physical and mechanical properties of polypropylene/wood flour composite were investigated. For this purpose, wood flour and polypropylene was mixed at 60 to 40% by weight. Eggshell powder at three levels (0, 5 and 10) percent and nano ZnO at four levels (0, 1.5, 3 and 5) percent were considered as variable factors. Physical and mechanical properties including water absorption and thickness swelling after 2 and 24 hours immersion in water, flexural strength were measured in accordance with DIN-EN 310-2006 standard, and tensile strength were measured in accordance with ASTM D1037 standard. Scanning electron microscope (SEM) were performed to interpret the results. The results were statistically analyzed using factorial experimental under completely randomized block design and the averages were compared using DMRT. Results showed that increasing the mixing ratio of eggshell powder to wood flour decrease mechanical strengths but were improved in water absorption and thickness swelling after 2 and 24 hrs. Using 1.5% nano zno increased the strength properties to the maximum values and improved physical properties.
Composite wood products
Hossein Rangavar; Abolfazl Kargarfard; Mohammad saleh Hosseini fard
Abstract
In this study, the effect of type II and III Portland cement and the use of undepithed and depithed sunflower stalks particles (Helianthus Annuus) with percentages of different mixing ratio of the poplar wood particles (Populous alba) with 100:0, 75:25, 50:50, 25:75 and 0:100 respectively in the manufacturing ...
Read More
In this study, the effect of type II and III Portland cement and the use of undepithed and depithed sunflower stalks particles (Helianthus Annuus) with percentages of different mixing ratio of the poplar wood particles (Populous alba) with 100:0, 75:25, 50:50, 25:75 and 0:100 respectively in the manufacturing of wood-cement composites were studied. Physical and mechanical properties of boards were measured as the effect of lignocellulosic material (sunflower stalks andpoplar wood) and Portland cement type (II and III) on the cement setting time. The results of the study showed that the lignocellulosic material reduced the hydration reaction and increased cement setting time. In this regard, sunflower stalks particles in comparison with poplar wood particles increased cement setting time intensively. The boards made from type III Portland cement had better mechanical strength and physical properties (water absorption and thickness swelling reduced) than with type II Portland cement. In comparison with poplar wood particles usage, the use of sunflower stalks particles and more amount of it caused to mechanical properties decreases and increased the water absorption and thickness swelling after 2 and 24 h water immersion. Therefore the best characteristics were obtained in boards made from 100 percent poplar wood particles. In other hands, using depithed sunflower stalks particles caused to improved the physical and mechanical characteristics. In general, it can be concluded that 25 percent of depithed sunflower stalks particles relative to poplar wood particles (relative to mass lignocellulosic materials( with type III Portland cement in the manufactured wood-cement boards has suitable physical and mechanical properties for usage of these boards in interior building applications.
Composite wood products
Saeid Ismaeilimoghadam; Afsaneh Shahraki; Fatemeh Dehdast; Samaneh Pourkarami
Abstract
The objective of this study was the evaluation of the addition of silica particles in composite on natural resistance and morphology of wood plastic composite against of white rot fungi (Trametes Versicolor). Wood flour at the ratio of 60% (w/w), polypropylene and 2 per hundred compound (phc) MAPP was ...
Read More
The objective of this study was the evaluation of the addition of silica particles in composite on natural resistance and morphology of wood plastic composite against of white rot fungi (Trametes Versicolor). Wood flour at the ratio of 60% (w/w), polypropylene and 2 per hundred compound (phc) MAPP was mixed. Nano and micro silica at 0, 1, 3 and 5 (phc) were added as filler. The mixing process in internal mixer (HAAKE) was done and test specimens were prepared using injection molding. The test specimens were exposed to Trametes Versicolor fungi for 8, 12 and 16 weeks at 25 oC and 75% humidity according to BS 838:1961. Then the mass loss, long-term water absorption and humidity coefficient diffusion of the samples were measured. The formation of hydrogen bonds between silica and wood flour was determined by Fourier Transform Infrared (FTIR) spectroscopy and the morphology of composite was stydied using scanning electron microscopy (SEM). The result showed that with increasing period of samples exposure to fungi, the mass loss, long-term water absorption and humidity coefficient diffusion in wood plastic composite increased. However at higher silica, decay in the samples was decreased. The effect of silica nanoparticles on natural resistance of wood plastic composite was higher than sample containing silica micro particles. Infrared spectroscopy showed hydrogen bonds between wood flour and silica. The result of scanning electron microscopy showed that with increasing of exposure time to fungi, small and large cracks in composite were created. However increasing silica addition, these cracks were decreased.
Composite wood products
Alireza Beiazyat; Laya Jamalirad; Hedayat alah Aminian; Sahab Hejazi
Abstract
In this research, the effect of the wood filler content and coupling agent (MAPP) on the physical and mechanical properties of Polypropylene reinforced with palm wood flour from the annual pruning of palm leaves (Shahani species) composite, were studied. For this purpose, the palm wood flour in three ...
Read More
In this research, the effect of the wood filler content and coupling agent (MAPP) on the physical and mechanical properties of Polypropylene reinforced with palm wood flour from the annual pruning of palm leaves (Shahani species) composite, were studied. For this purpose, the palm wood flour in three levels of 30%, 40%, 50% and two levels of Maleic anhydride grafted polypropylene 4% and 6% were used as variable factors. Then, the Physical and mechanical properties of samples, including thickness swelling after 2 and 24 hours of immersion in water, bending strength, bending modulus, tensile strength, tensile modulus and impact strength, were measured.The results showed that by increasing palm wood flour, the bending strength, tensile strength and impact strength were decreased but the thickness swelling, bending modulus, tensile modulus were increased. It was also found that by adding MAPP, thickness swelling, bending strength, bending modulus, tensile strength and tensile modulus were improved. The results revealed that at increased consumption of palm wood flour and adding coupling agent leads to improve quality of the interface and significant changes especially dimensional stability and MOE, are achieved.
Composite wood products
Habib alah Khademieslam; Mehdei Kalagar
Abstract
In this investigation, tensile and physical properties of polypropylene (as matrix)/wheat straw fiber/paper mill sludge (as filler) composites was studied. The ratio of wheat straw fiber/ paper mill sludge was selected as 40/0, 30/10, 20/20, 10/30 and 0/40 (w/w) were used. Also, for better ...
Read More
In this investigation, tensile and physical properties of polypropylene (as matrix)/wheat straw fiber/paper mill sludge (as filler) composites was studied. The ratio of wheat straw fiber/ paper mill sludge was selected as 40/0, 30/10, 20/20, 10/30 and 0/40 (w/w) were used. Also, for better compatibility between the two phases 3% MAPP as coupling agent was used. Mixing process was done in twin screw internal mixer extruder, and then composite samples were manufactured by injection molding. Result indicated that the tensile modulus of elasticity improved with increasing fillers and also it was observed that the toughness of composite increased when compared to the pure PP, while due to the usage of more paper sludge, these properties was improved. Tensile strength of composite decreased with adding 40% wheat straw fiber, but with addition of sludge tensile strength increased significantly. Adding wheat straw in PP matrix and its hydrophilic properties resulted in the highest rates of water absorption and thickness swelling. However, adding paper sludge and lower amount of lignocellulosic material, and the compatibilizer noticeably decreased the physical properties due to better bonding between two phases.
Composite wood products
Alireza Sokhtesaraei; Sahab Hejazi; Laya Jamalirad; Mohammad Ahmadi; Sead behnam Hosseini
Abstract
In this study, the physical and mechanical properties of polypropylene composites reinforced with alkaline sulfite-anthraquinone, soda-anthraquinone and monoethanolamine-anthraquinone and chemical mechanical produced from non-extrated and pre-extracted bagasse with hot water were studied. MAPP coupling ...
Read More
In this study, the physical and mechanical properties of polypropylene composites reinforced with alkaline sulfite-anthraquinone, soda-anthraquinone and monoethanolamine-anthraquinone and chemical mechanical produced from non-extrated and pre-extracted bagasse with hot water were studied. MAPP coupling agent (3%) was added and the performance of pretreated and unpretreated bagasse composites were compared. The ratio of the polypropylene and reinforcement material (pulp) was considered at 50/ 50 (w/w). The results showed that the pulping process has a significant effect on all physical and mechanical properties of produced composites. In general, composites containing chemical pulps showed greater dimensional stability and mechanical strengths but lower water absorption than that of mechanical pulp. Composites containing treated fibers with alkaline sulfite-anthraquinone and soda pulp had the highest mechanical properties and dimensional stability. Composites made from fibers in which hemicelluloses were extracted and then were treated with chemical pulping processes had the highest mechanical strength and dimensional stability among all of samples. The highest mechanical strengths and dimensional stability were observed in composites which were reinforced with treated fibers compared with control samples containing untreated bagasse fibers. In general, the results showed the superior physical and mechanical characteristics for pulp - plastic composites compared with wood flour plastic composites.
Composite wood products
Hassan Ziaei Tabari; Habibollah Khademieslam; Behzad Bazyar; Amir Homan Hemmasi
Abstract
A new kind of thermoplastic elastomer nano composite reinforced with nano cellulose fibers is reported. The first aim of this investigation was to study the interaction and dispersion of nano cellulose fiber into Pebax matrix. This copolymer is Polyether – b – Amide thermoplastic elastomer ...
Read More
A new kind of thermoplastic elastomer nano composite reinforced with nano cellulose fibers is reported. The first aim of this investigation was to study the interaction and dispersion of nano cellulose fiber into Pebax matrix. This copolymer is Polyether – b – Amide thermoplastic elastomer which is synthetized from renewable resources, and its hydrophilic character allows it to interact with nano cellulose. The interaction and reinforcement effect of nano cellulose at 3 levels of nano cellulose (1%, 3% and 5%) were examined by Scanning electron microscopes (SEM), Fourier transform infrared spectroscopy (FTIR) and Mechanical tests (young module, elongation at break and impact resistance). The results achieved from these tests were indicating appropriate effects of nano cellulose fibers for the strong interaction and close contact with polyamide phase of Pebax polymer which caused high mechanical properties (at 3% of nanoellulose) in nano composites. The young module and impact resistance of nano composite were significantly increased.
Composite wood products
Behzad Kord; Mehdi Roohani
Abstract
In this study, the synergic effects of cellulose nanocrystal and nanoclay on the biodegradation and migration behavior of composite films based on polylactic acid (PLA) were investigated. PLA and PLA-based nanocomposite films containing different loads of cellulose nanocrystal ...
Read More
In this study, the synergic effects of cellulose nanocrystal and nanoclay on the biodegradation and migration behavior of composite films based on polylactic acid (PLA) were investigated. PLA and PLA-based nanocomposite films containing different loads of cellulose nanocrystal and nanoclay (0, 3 and 5 wt % each) were fabricated using a solvent casting method. In order to improve the compatibility and miscibility of the whole system with respect to PLA matrix, cellulose nanocrystal was treated with oleic acid. For evaluating the biodegradation and migration behavior of films, the enzymatic degradation, biodegradation, buried in soil and compost; and overall migration were tested. The results indicated that the biodegradability of the composites increased with the increase of nanoparticles in the enzymatic, soil and compost media. Besides, with the addition of cellulose nanocrystal and nanoclay to the polymer matrix, the overall migration of composites decreased. This could be due to a better adhesion of the nanoparticles to the polymer matrix, and the tortuousity of their path.
Composite wood products
Morteza Nazeryan; Vahid Moazemi; Rahim Mohebi gargari
Abstract
The aim of this study was the evaluation of treatment effect of giant reed (Arundo donax) (untreated, heat-treated and hot-water-leached treatment) used in core layer of sandwich panel, and also the effect of weight ratio of almond shell powder to melamine/urea formaldehyde at three levels (3:97, 18:82 ...
Read More
The aim of this study was the evaluation of treatment effect of giant reed (Arundo donax) (untreated, heat-treated and hot-water-leached treatment) used in core layer of sandwich panel, and also the effect of weight ratio of almond shell powder to melamine/urea formaldehyde at three levels (3:97, 18:82 and 33:67 w/w) on the dry- and wet-pull off adhesion (after 2 hours immersion in boiling water) of sandwich panel. Statistical analysis and Duncan multiple range test showed that the type of treatment of core layer particle and the ratio of almond shell powder to melamine/urea formaldehyde statistically influenced the dry and wet-pull off adhesion. According to the FTIR spectra obtained from samples made from particle treated with hot-water, the hot-water treatment caused an increase in number of hydrogen bonds. Macroscopic photos, also, showed that hot-water treatment created the best surface quality in order to forming desirable bond. Generally, panel manufactured from hot-water-treated particles in core layer and 33% of almond shell powder in glue line had the highest pull off adhesion in dry (5.01MPa) and wet (2.86 MPa) conditions.
Composite wood products
Amir Norbakhsh; Abolfazl Kargarfard
Abstract
In this research the impact of micro cellulose particles length, and coupling agent (MAPP) on the mechanical and thermal properties of Nano/ wood plastics composites were investigated. The results showed that mechanical properties of the composites made with 50 micron micro cellulose particles and 5 ...
Read More
In this research the impact of micro cellulose particles length, and coupling agent (MAPP) on the mechanical and thermal properties of Nano/ wood plastics composites were investigated. The results showed that mechanical properties of the composites made with 50 micron micro cellulose particles and 5 % of MAPP were significantly different to those of the lower length (20 micron) and 2.5% of MAPP. Addition of MAPP enhanced the mechanical and thermal properties of the blends, due to the improvement of interface bond between the filler and matrix of Nano/ wood plastics composites. The significant improvements in mechanical properties of the blended composites made with MAPP and NC were further supported by SEM and TEM micrographs. Nano/ clay particles distribution and thermo gravimetric analysis (TGA) indicated that the addition of 5% MAPP and the longer micro cellulose particles remarkably increased the thermal stability of the blends compared to other treatments of Nano/ wood plastics composites.
Composite wood products
Seyedeh Zahra Hosseini; Ali akbar Enayati
Abstract
This study has been undertaken to investigate effects of synthetic waste fibers of polyester in improving mechanical properties of wood plastic composites. Two types of polyester fibers (carpet fibers and polish fibers), high density polyethylene along with 40 wt% wood flour of populus, 2 wt% of maleic ...
Read More
This study has been undertaken to investigate effects of synthetic waste fibers of polyester in improving mechanical properties of wood plastic composites. Two types of polyester fibers (carpet fibers and polish fibers), high density polyethylene along with 40 wt% wood flour of populus, 2 wt% of maleic anhydride grafted polyethylene (MAPE) and ethylene- glycidyl methacrylate copolymer (E-GMA) as coupling agent were used. After two-stage mixing, resulted granules were hot pressed (at160℃, under 10 Mpa pressures) to produce test boards measuring 20×20×0.7 cm in dimensions. Results from measurement of mechanical properties of the samples have shown that with increasing the amount of polyester fibers (carpet fibers and polish fibers), tensile modulus of elasticity of wood plastic composites decreases and increases his flexural modulus of elasticity. Also by increasing amount carpet fibers, the tensile, flexural strengths of wood plastic composites-carpet fibers increases and the maximum of flexural strength is in a sample that contained 20 wt% carpet fibers. But about the plush fiber, 10 wt% of it is efficient for increasing the flexural and tensile strengths of wood plastic composites-plush fibers. Then on the composites contained the optimal polyester (polish fiber 10% and carpet fibers 20%) for increasing the mechanical strength, TGA and DSC testes for experience the thermal behavior of the composites were analyzed. Thermal analyses results have shown that with addition of polyester in the wood composite plastic, are reduced the percentage of crystallization, temperature of crystallization and the temperature of stability and degradation thermal of the composite.Morphologic study by Scanning Electron Microscopy indicates that with the increasing percentage of polyester fibers, is more denser and smoother the integration between the fracture surface of the composite material.
Composite wood products
ali hasanpoor tichi; behzad bazyar; Habibalah khademieslam; Mohammad Talaeipoor
Abstract
In this study the possibility of nano- wollastonite usage in three level (0 , 3 and 6 percent per dry weight of cement) and mixture ratios of lingo cellulosic materials to cement in three level 10:90, 20:80 and 30:70 on physical, mechanical and microscopic properties of composite made from kraft fibers ...
Read More
In this study the possibility of nano- wollastonite usage in three level (0 , 3 and 6 percent per dry weight of cement) and mixture ratios of lingo cellulosic materials to cement in three level 10:90, 20:80 and 30:70 on physical, mechanical and microscopic properties of composite made from kraft fibers was investigated. There were three replicatesfor each treatment and 27 experimental boards were manufactured totally. Specimens were prepared according to DIN- EN- 634 standard to measure mechanical and physical properties. Mechanical and physical properties including compression strength, interior bonding (IB), thickness swelling after 2 and 24 hours immersion into the water and density were measured. Micro- structural properties of composites were evaluated by SEM images.The results showed that compression strength , interior bonding and density increased by higher levels of nano- wollastonite content in the boards. By increasing of nano- wollastonite, dimensional stability was significantly improved in comparison to the control boards. SEM images showed the improvement of micro- structural boards by increasing the nano- wollastonite content.
Composite wood products
Taherh Gholipor
Abstract
In this study the effect of type of polymer including polyvinyl chloride and high density polyethylene in production of wood plastic composite by using of canola straw waste in two forms, with and without pith (depithed), in combination with wood flour were investigated. Five levels of lignocellulosic ...
Read More
In this study the effect of type of polymer including polyvinyl chloride and high density polyethylene in production of wood plastic composite by using of canola straw waste in two forms, with and without pith (depithed), in combination with wood flour were investigated. Five levels of lignocellulosic materials were used consisting of 100 % wood flour, 100% canola flour including pith, 100% depithed canola flour, 50% wood flour plus 50% canola flour with pith and 50% wood flour plus 50% depithed canola flour. Physical properties of boards including, thickness swelling and water absorption after 2 and 24 hours immersion in water and mechanical properties such as screw withdrawal strength perpendicular on the surface, flexural strength and modulus of elasticity according to EN were evaluated. The results of this study showed that wood plastic composite made of high density polyethylene had better physical and mechanical properties compared with polyvinyl chloride and using of canola flour combined with wood flour lead to increasing flexural strength and modulus of elasticity, but decreased screw withdrawal strength perpendicular on the surface. Using of lignocellulosic filler material by combining of 50% wood flour plus 50 % depithed canola flour combined with high density polyethylene powder can be produced wood plastic composite board with suitable physical and mechanical properties.
Composite wood products
Saeid Ismaeilimoghadam; Mohammad Shamsian; Ali Bayat Kashkoli; Behzad Kord
Abstract
This research with aim of evaluation the effect of chemical treatment of wood flour on physical, mechanical and morphological properties of polypropylene-nano SiO2 hybrid nanocomposite were done. For this purpose, wood flour with sodium hydroxide and benzyl chloride to chemically treatment. For ensure ...
Read More
This research with aim of evaluation the effect of chemical treatment of wood flour on physical, mechanical and morphological properties of polypropylene-nano SiO2 hybrid nanocomposite were done. For this purpose, wood flour with sodium hydroxide and benzyl chloride to chemically treatment. For ensure the chemical treatment, Fourier transform infrared (FTIR) spectroscopy tests was done on the treated and untreated wood flour. Wood flour at 60% weight ratio with polypropylene with 4% maleic anhydrate grafted polypropylene coupling agent in extrusion were mixed. Also Nano SiO2 with 0, 1, 3 and 5% as filler was used. The sample specimen were manufactured by using injection molding techniques. Then mechanical tests such as bending resistance and modulus and physical tests such as water absorption and thickness swelling according to the ASTM standard was done on the samples. Also for morphological investigation on the Nano composites from Scanning Electron Microscopy (SEM) was used. Results showed that the bending resistance and modulus increased with effect of chemical treatment but water absorption and thickness swelling decreased. With increase of Nano SiO2 to 3% the mechanical properties increased but adding further amount Nano particles reduced the mechanical properties. With increase of SiO2 Nano particles to 5% the water absorption in Nano composites were increased, but thickness swelling was decrease. The results of SEM showed an improvement in interface between filler and matrix with effect of chemical treatment Also transmittance of Nano SiO2 to 3% levels was good.
Composite wood products
Hossein Rangavar; Abolfazl Kargarfard; Mohammad Hamedbazzi
Abstract
In this study the effect of adhesive types and coated veneer on the physical and mechanical properties of particleboard were studied. Two types of coating, including natural veneer of beech and artificial veneer of High Paper Lamination (HPL, formica) and three types of adhesive composition including ...
Read More
In this study the effect of adhesive types and coated veneer on the physical and mechanical properties of particleboard were studied. Two types of coating, including natural veneer of beech and artificial veneer of High Paper Lamination (HPL, formica) and three types of adhesive composition including (100 % UF), (15% PVA + 85 % UF) and (25% PVA + 75% UF) were used to stick the veneer on particleboard. Physical and mechanical properties of the boards were evaluated according to the EN and ASTM standards. The results of this study showed that increasing PVA resin mixed with UF adhesive, in natural and artificial veneers covering, improved the physical and mechanical properties of the boards. Also, the results indicate that the beech veneer boards are more adhesive than formica. However, formica coated boards compared with beech veneer boards, showed higher bending strength and higher modulus of elasticity. It is evident that the water absorption and thickness swelling values in formica coating boards were less than the beech veneer. Collectively, for production of wooden furniture such as library shelves and cabinets, formica decorative coatings must be used to improve the bending strength. The formica decorative coatings are high in abrasion resistance and stable in humid environment. To stick formica decorative coatings on particleboards, the recommended mix design is 25% PVA and 75% UF resin.
Physics and Mechanical Wood
Ali Kazemi tabrizi; Amir Nourbakhsh; Javad Sepidehdam
Abstract
In this study, the effect of fish waste powder, base material polyethylene , and also the quantity of coupling agent (MAPE) on physical and mechanical properties of wood-plastic composite were studied. For this purpose, wood powder at 40% was mixed with 60% of HDPE. Fish waste in three levels (5, 10 ...
Read More
In this study, the effect of fish waste powder, base material polyethylene , and also the quantity of coupling agent (MAPE) on physical and mechanical properties of wood-plastic composite were studied. For this purpose, wood powder at 40% was mixed with 60% of HDPE. Fish waste in three levels (5, 10 and 15%) mixed into wood powder and coupling agent on three levels (0, 2 and 4) of HDPE in a blender at 180 °C and a speed rotating of 50 rpm, and samples were made with using of injection molding for standard tests. The mechanical properties: tensile and bending strength, bending and tensile modulus were investigated according of ASTM standards. This result suggests that increasing the amount of fish powder waste to 10%, increased bending strength while other strengths diminished. The amounts of all strengths were increased by increasing in percentage of coupling agent to 4%.The results shows that fish waste was suitable as a new material for wood plastics composites.
Composite wood products
Mehdi Kalagar; behzad baziyar; Habibalah Khademislam; Esmaeil Ghasemi; Amir homan Hemmasi
Abstract
In this paper, poly lactic acid (PLA)/ wheat straw fibers manufactured by twin screw extruder and molding compression have been studied. Wheat straw fibers were treated with trietoxymethel silane for better compatibility between two phases. Physical properties, tensile properties of the composites were ...
Read More
In this paper, poly lactic acid (PLA)/ wheat straw fibers manufactured by twin screw extruder and molding compression have been studied. Wheat straw fibers were treated with trietoxymethel silane for better compatibility between two phases. Physical properties, tensile properties of the composites were analysis. The effect of the wheat straw fibers on the thermal properties of PLA has also been investigated in DSC experiments. The effects of silane treatment on the wheat straw fibers have been analyzed by FTIR. Scanning electron microscopy from samples surface were used for better study of water absorption and thickness swelling. Composites wheat straw fiber were treated shows signification lower water absorption and thickness swelling than composites PLA/ untreated wheat straw fibers. The lower amount of water absorption and thickness swelling occurred in the pure PLA. The existence crack and break occurred in the surface of PLA/ untreated wheat straw fibers composites after immersion in the water indicating higher water absorption and thickness swelling were in these samples. Wheat straw fibers were treated with silane due to better wetting and better linkage in the interfacial surface with PLA matrix showed higher tensile properties then PLA/ untreated wheat straw fiber composites. Differential scanning calorimeter test showed that with addition wheat straw fibers were treated to pure PLA the increased glass transition temperatures. The nucleating effect of wheat straw fibers, special treatment with silane cause to increased in the crystallization temperature composites than pure PLA which a positive effect showed on the degree of crystallization.