نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی فناوری تولید سلولز و کاغذ، دانشکده مهندسی انرژی و فناوری‌های نوین، دانشگاه شهید بهشتی، زیراب، ایران

2 دانشجوی کارشناسی ارشد گروه مهندسی فناوری سلولز و کاغذ، دانشکده مهندسی انرژی و فناوری‌های نوین، دانشگاه شهید بهشتی

چکیده

این پژوهش با هدف بررسی اثر تشکیل چندلایه‌های پلیمری از نشاسته کاتیونی و نشاسته آنیونی بر روی الیاف CMP با تکنیک لایه‌نشانی لایه ‌‌به ‌‌لایه بر خواص خمیرکاغذ و کاغذهای تهیه‌شده از آن انجام شد. آزمایش‌های لایه‌نشانی یک در میان نشاسته‌های کاتیونی و آنیونی (به‌ترتیب با مصرف 1% و 5/0 درصد بر اساس وزن خشک الیاف)؛ با 10 دقیقه زمان لایه‌نشانی، برای تشکیل یک تا پنج لایه متوالی نشاسته‌های یونی بر روی الیاف CMP انجام شد. ویژگی‌های خمیرکاغذ از جمله: درجه روانی، شاخص نگهداری آب و پتانسیل زتا اندازه‌گیری شد. سپس از این خمیرکاغذ، کاغذهای دست ساز با وزن پایه 60 گرم بر مترمربع تهیه و خواص آن مورد ارزیابی قرارگرفت. تغییرات متوالی پتانسیل زتا تشکیل لایه‌های متوالی نشاسته‌ها بر روی الیاف CMP را تأیید می-کند. به‌علاوه، با افزایش تعداد لایه‌های تشکیل‌شده شاخص نگهداری آب و میزان درجه روانی خمیرکاغذ افزایش یافت. نتایج ارزیابی ویژگی‌های کاغذ تهیه‌شده نشان داد که خواص پیوندپذیری بین الیاف از جمله شاخص مقاومت به کشش و شاخص مقاومت به ترکیدن افزایش قابل ملاحظه‌ای یافته است. تصاویر الکترونی تهیه‌شده بر ایجاد پیوندهای بیشتر بین الیاف به سبب جذب بیشتر نشاسته کاتیونی تأکید دارد.

کلیدواژه‌ها

موضوعات

-Agarwal, M., Lvov, Y. and Varahramyan, K., 2006. Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology, 17: 5319–5325.
-Agarwal,M., Xing, Q., Shim, B., Kotov, N., Varahramyan,K. and Lvov,Y., 2009. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers. Nanotechnology, 20(21): 215602-215610.
-Bertrand, P., Jonas, A., Laschewsky, A. and Legras, R., 1999. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromolecular Rapid Communications, 1999: 21: 319.
-Brancato, A.A. 2008. Effect of progressive recycling on cellulose fiber surface properties, Doctor of philosophy thesis, Georgia institute of technology, School of chemical and bimolecular engineering, Georgia, USA.
-Chi, H., Li, H., Liu, W. and Zhan, H., 2007. The retention and drainage aid behavior of quaternary chitosan in papermaking system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 297: 147–153.
-Decher, G., Hong, J.D. and Schmitt, J., 1992. Buildup of ultrathin multilayer films by a self-assembly process. III: Consecutivelyalternating adsorption of anionic and cationic polyelectrolyte on charged surface, Thin solid film, 210: 831–835.
-Eriksson, M., Notley, S.M. and Wagberg, L., 2005. The influence on paper strength properties when building multilayers of weak polyelectrolytes onto wood fibers. Journal of Colloid and Interface Science, 292: 38-45.
-Fleer, G.J., Cohen Stuart, M.A., Scheutjens, J.M.H.M., Cosgrove, T. and Vincent, B., 1993. Polymers at interfaces. Chapman and Hall, London, UK, 502P.
-Hongta, Y., 2008. Fundamentals, Preparation and characterization of super hydrophobic wood fiber products, Ph.D. thesis of Paper Science and Engineering, School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Georgia, USA.
-Hubbe, M.A. 2005. Micro and Nanoparticles in Papermaking, J. M. Rodriguez (ed.), TAPPI Press, Atlanta, GA, USA, 197p.
-Hubbe, M., 2006. Bonding between cellulosic fibers in the absence and presence of dry-strength agent-A review. BioResource, 1(2): 281-318.
-Katz, S., Liebergott, N. AND Scallan, A.M., 1981. A mechanism for the alkali strengthening of mechanical pulps. Tappi journal, 64(7): 97-100.
-Law, K.N., Lvalade, J. and Quan, J., 1996. Effect of recycling on papermaking properties of mechanical and high yield pulps, Tappi Journal, 79(3): 167-174.
-Lvov, Y.M., Grozdits, G.A., Eadula, S., Zheng, Z. and Lu, Z., 2006. Layer-by-layer nanocoating of mill broken fibers for improved paper. Nordic pulp and  paper Research Journal, 21: 552-557.
-Maurer, H., 2009. Starch: Chemistry and Technology. Third Edition. Chapter18: Starch in the paper industry. Elsevier Inc. New York, USA, 48p.
-Page, D.H., 1969. Theory for the tensile strength of paper. Tappi journal, 52(4): 674-681.
-Roberts, J.C., Au, C.O., Clay, G.A. and Lough, C., 1986. The effect of C-labelled14 cationic and native starches on dry strength and formation. Tappi Journal, 69(10): 88-93.
 
-Ryu, J., 2009. Properties of handsheet made of multilayered fibers with polyelectrolytes at different pH and conductivity. PhD thesis, Department of forest sciences, College of Agriculture and life sciences, Seul national university, Korea.
-Van de Steeg, H.G.M., 1992. Cationic starches on cellulose surfaces: A study of polyelectrolyte adsorption. Ph.D. Thesis, University of Wageningen, USA.
-Wagberg, L., Forsberg, S., Johansson, A. and Juntti, P., 2002. Engineering of Fiber Surface Properties by Polyelectrolyte Multilayer Concept. Journal of Pulp and Paper Science, 28: 222-229.
-Wang, F. and Martin, H., 2002. Charge properties of fibers in the paper mill environment. 1. Effect of electrical conductivity, Journal of pulp and paper science, 28: 347-353
-Wistara, N. and Young, R.A., 1999. Properties and treatments of pulps from recycled paper, Part: Physical and chemical properties of pulps. Cellulose, 6(4): 291-324.
-Wistrand, I., Lingstrom, R. and Wagberg, L., 2007. Preparation of electrically conducting cellulose fibers utilizing polyelectrolyte multilayers of poly (3, 4-ethylenedioxythiophene): poly (styrene sulphonate) and poly (allyl amine). European Polymer Journal, 43: 4075-4091.
-Xing, Q., Eadula, S.R. and Lvov, Y.M., 2007. Cellulose Fiber-Enzyme Composites Fabricated through Layer-by-Layer Nanoassembly. Biomacromolecules, 8(6): 1987-1991.
-Youn, H., Chin, S., Ryu, J. and Kwon, H., 2007. Basic study on electrochemical properties of multilayered pulp fibers with polyelectrolytes. Journal of KTAPPI, 40(3): 53-60.
-Zakrajsek, N., Knez, S., Ravnjak, D. and Golob, J., 2009. Analysis of Modified Starch Adsorption Kinetics on Cellulose Fibres via the Modified Langmuir Adsorption Theory. Chemical and biochemical engineering quarterly, 23 (4): 461–470.