نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکدة منابع طبیعی دانشگاه تهران، کرج، ایران

2 دانشیار، گروه علوم و صنایع چوب و کاغذ، دانشکدة منابع طبیعی دانشگاه تهران، کرج، ایران

3 استاد- دانشکده منابع طبیعی کرج- دانشگاه تهران

چکیده

DOR:98.1000/1735-0913.1398.34.124.66.1.9.1580
در این تحقیق از پسماندهای کلش ساقة برنج به‌عنوان مادة لیگنوسلولزی تجدیدپذیر برای تولید آئروژل لیگنوسلولزی نانو ساختار استفاده شد. بدین منظور، ابتدا پودر کلش برنج در محلول قلیایی آب – هیدروکسید سدیم تیمار شد و مخلوط حاصل با توالی انجماد – ذوب، تبادل حلال و در آخر با خشک‌کن انجمادی به آئروژل لیگنوسلولزی تبدیل شد. خواص محصول حاصل شامل دانسیته و میزان تخلخل کل تعیین شد و سایر خواص فیزیکی و شیمیایی با روش‌های آنالیز شامل SEM، FTIR، XRD، جذب نیتروژن (BET) و DSC ارزیابی شد. نتایج نشان داد که تیمار قلیایی سبب انحلال و خروج بخش زیادی از مواد ساختاری کلش برنج در جریان ساخت آئروژل می‌شود که نتیجة آن تولید محصولی با چگالی کم، تخلخل پیوسته، سطح ویژة زیاد و اندازة حفره‌های نانومتری است. آئروژل حاصل دارای زمینه‌ای متشکل از ذرات و الیاف به‌هم‌پیوسته با ابعادی در مقیاس نانومتر بود که تفاوت زیادی از نظر شیمیایی و فیزیکی با کلش ساقة برنج اولیه داشت.

کلیدواژه‌ها

موضوعات

- Ashori, A., Babaee, M., Jonoobi, M. and Hamzeh, Y., (2014). Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydrate Polymers, 102, 369-375.
- Aulin, C., Netrval, J., Wågberg, L. and Lindström, T., (2010). Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter, 6(14), 3298-3305.
- Auxenfans, T., Crônier, D., Chabbert, B. and Paës, G., 2017. Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. Biotechnology for Biofuels, 10(1), 36-52.
- Babaee, M., Hamzeh, Y., Jonoobi, M. and Ashori, A., (2017). Chemical modification of cellulose nanofibers and its impact on their hydrophobicity and dispersibility. Journal of Forest and Wood Products, 67(2), 295-306.
- Bagewadi, Z. K., Mulla, S. I. and Ninnekar, H. Z., (2017). Optimization of laccase production and its application in delignification of biomass. International Journal of Recycling of Organic Waste in Agriculture, 6(4), 351-365.
- Carrillo, F., Colom, X., Sunol, J. J. and Saurina, J., (2004). Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. European Polymer Journal, 40(9), 2229-2234.
- Chen, M., Zhang, X., Zhang, A., Liu, C. and Sun, R., 2016. Direct preparation of green and renewable aerogel materials from crude bagasse. Cellulose, 23(2), 1325-1334.
- Ebrahimian Pirbazari, A., Fakhari Kisom, B. and Ghamangiz Khararoodi, M., 2015. Anionic surfactant-modified rice straw for removal of methylene blue from aqueous solution. Desalination and Water Treatment, 65(3), 1-15.
- Fan, P., Yuan, Y., Ren, J., Yuan, B., He, Q., Xia, G., Chen, F. and Song, R., 2017. Facile and green fabrication of cellulosed based aerogels for lampblack filtration from waste newspaper. Carbohydrate Polymers, 162, 108-114.
- Haghir Madadi, M., Bahramian A.R. and Hadizade Raeisi, H., 2018. Improvement in ablation and thermal properties of ultra-lightweight silicone/cork composites insulator using novolac aerogel. Iranian Journal of Polymer Science and Technology, 30(6), 512-529.
- Hu, S., Gu, J., Jiang, F. and Hsieh, Y. L., 2016. Holistic rice straw nanocellulose and hemicelluloses/lignin composite films. Sustainable Chemistry & Engineering, 4(3), 728-737.
- Huang, Y., Peng, L., Liu, Y., Zhao, G., Chen, J. Y. and Yu, G., 2016. Biobased nano porous active carbon fibers for high-performance supercapacitors. Applied Materials & Interfaces, 8(24), 15205-15215.
- Ibrahim, M. M., El-Zawawy, W. K., Jüttke, Y., Koschella, A. and Heinze, T., (2013). Cellulose and microcrystalline cellulose from rice straw and banana plant waste: preparation and characterization. Cellulose, 20(5), 2403-2416.
- Kettunen, M., Silvennoinen, R. J., Houbenov, Nykänen A., Ruokolainen J., Sainio J., Pore V., Kemell M., Ankerfors M., Lindström T., Ritala M., Ras R. H. A. and Ikkala O., (2011). Photoswitchable superabsorbency based on nanocellulose aerogels. Advanced Functional Materials, 21(3), 510-517.
- Li, F. H., Hu, H. J., Yao, R. S., Wang, H., and Li, M. M., 2012. Structure and saccharification of rice straw pretreated with microwave-assisted dilute lye. Industrial & Engineering Chemistry Research, 51(17): 6270-6274.
- Li, X., Ye, J., Chen, J., Yu, J., Ding, M. and Hong, J., 2015. Dissolution of wheat straw with aqueous NaOH/Urea solution. Fibers and Polymers, 16(11), 2368-2374.
- Li, J., Lu, Y., Yang, D., Sun, Q., Liu, Y. and Zhao, H., (2011). Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules, 12(5), 1860-1867.
- Liao, Q., Su, X., Zhu, W., Hua, W., Qian, Z., Liu, L. and Yao, J., (2016). Flexible and durable cellulose aerogels for highly effective oil/water separation. RSC Advances, 6(68), 63773-63781.
- Long, L.Y., Weng, Y.X. and Wang, Y.Z., 2018. Cellulose aerogels: synthesis, applications, and prospects. Polymers, 10(6), 623-651.
- Lu, Y., Sun, Q., Yang, D., She, X., Yao, X., Zhu, G., Liu, Y., Zhao, H. and Li, J., (2012). Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution. Journal of Materials Chemistry, 22(27), 13548-13557.
- Mussana, H., Yang, X., Tessima, M., Han, F., Iqbal, N. and Liu, L., 2018. Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system. Industrial Crops and Products, 113, 225-233.
- Nishiwaki-Akine, Y., Kanazawa, S., Uneyama, T., Nitta, K. H., Yamamoto-Ikemoto, R. and Watanabe, T., 2017. Transparent woody film made by dissolution of finely divided Japanese beech in formic acid at room temperature. Sustainable Chemistry & Engineering, 5(12), 11536-11542.
- Pääkkö, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindström, T., Berglund, L.A., and Ikkala, O. (2008). Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 4(12), 2492-2499.
- Pan, X. J. and Sano, Y., (1999). Atmospheric acetic acid pulping of rice straw IV: Physico-chemical characterization of acetic acid lignins from rice straw and woods. Part 1. Physical characteristics. Holzforschung, 53(5), 511-518.
- Rahnama, N., Mamat, S., Shah, U. K. M., Ling, F. H., Rahman, N. A. A. and Ariff, A. B., 2013. Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation. BioResources, 8(2), 2881-2896.
- Sang, L., Luo, D., Xu, S., Wang, X. and Li, X., (2011). Fabrication and evaluation of biomimetic scaffolds by using collagen–alginate fibrillar gels for potential tissue engineering applications. Materials Science and Engineering: C, 31(2), 262-271.
- Singh, R., Tiwari, S., Srivastava, M. and Mina, U., (2013). Effect of combination of microwave and hydrogen peroxide (H2O2) pretreatment on enzymatic saccharification of rice straw. International Journal of Environmental Engineering and Management, 4(5), 529-542.
- Terinte, N., Ibbett, R. and Schuster, K. C., (2011). Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques. Lenzinger Berichte, 89, 118-131.
- Xu, M., Bao, W., Xu, S., Wang, X. and Sun, R., 2015. Porous cellulose aerogels with high mechanical performance and their absorption behaviors. BioResources, 11(1), 8-20.
- Wang, Z., Liu, S., Matsumoto, Y. and Kuga, S., (2012). Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose, 19(2), 393-399.
- Zheng, Q., Zhou, T., Wang, Y., Cao, X., Wu, S., Zhao, M., Wang, H., Xu, M., Xheng, J. and Guan, X., 2018. Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Scientific Reports, 8(1), 1321.
- Zhu, Y., Yang, L., Wu, W., Wang, Z. and Jin, Y., 2016. Complete dissolution of ball-milled masson pine using an aqueous sodium hydroxide solvent. BioResources, 11(3), 6017-6025.