تحلیل نحوه جذب، پیکره‌بندی و عملکرد پلی الکترولیت کایتوزان در خمیرکاغذ با استفاده از تکنیک الیپسومتری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، مازندران، ایران.

2 عضو هیات علمی - دانشگاه تربیت مدرس

3 استادیار/دانشگاه شهید بهشتی

چکیده

DOR:98.1000/1735-0913.1398.34.535.69.4.1578.1610
کایتوزان یکی از بیوپلیمرهایی است که دارای ویژگی‌های منحصر به‌فردی می‌باشد و اخیراً در کاربردهایی نظیر کاغذسازی مورد توجه قرار گرفته است. این پلیمر در شرایط اسیدی محلول بوده و قابلیت اثرگذاری به عنوان یک پلی‌الکترولیت در شرایط کلوییدی خمیرکاغذ را داراست. در حالی که بر اساس مطالعات انجام‌شده، کارایی این پلی‌الکترولیت در بهبود قابلیت آبگیری، ماندگاری و حتی ویژگی‌های مقاومتی در شرایط قلیایی بهتر بوده ‌است. لذا در این تحقیق، عملکرد کایتوزان در شرایط مختلف مورد مطالعه قرار گرفت و سعی شد نتایج حاصله با استفاده از مدل ویفر سیلیکونی، تکنیک الیپسومتری و برپایه تفسیر فرآیند جذب سطحی و نحوه‌ی قرارگیری کایتوزان مورد بررسی قرار گیرد. به همین منظور، الیاف کرافت سفیدشده سوزنی‌برگان تا درجه روانی کانادایی 300 میلی‌لیتر پالایش گردید و پس از افزودن کایتوزان و نیز نانوسیلیکا در pH مختلف، فاکتورهای درجه روانی و ماندگاری مورد ارزیابی قرارگرفت. نتایج این تحقیق تأیید نمود که پلی‌الکترولیت کایتوزان به تنهایی و نیز همراه نانوسیلیکا در pH قلیایی عملکرد مناسبی را در افزایش آبگیری و ماندگاری نسبت به سایر سطوح pH از خود نشان داد. اما در آزمون درجه‌ی روانی در pH اسیدی، افزودن کایتوزان به‌همراه نانوسیلیکا موجب کاهش آبگیری گردید و در آزمون ماندگاری نرمه در pHهای خنثی و اسیدی اثر قابل ملاحظه‌ای مشاهده نشد. در ادامه به منظور تفسیر این مشاهدات و توجیه چگونگی رفتار پلی‌الکترولیت کایتوزان، داده‌های حاصل از تکنیک الیپسومتری برای بررسی نحوه قرارگیری و ضخامت لایه جذب شده کایتوزان مورد بررسی قرار گرفت که نشان‌دهنده ضخامت بیشتر لایه پلیمری جذب شده در شرایط قلیایی و بنابراین امکان تشکیل دم و مارپیچ گسترده‌تر در محیط و قابلیت تأثیرگذاری بیشتر فراتر از لایه دوگانه الکتریکی بوده است.

کلیدواژه‌ها


-Amiri, E., Rahmaninia, M. and Khosravani, A., 2019. Effect of chaitosan molecular weight on the performance of chitosan-silica nanoparticle system in recycled pulp. BioResources, 14(4): 7687-7701.

-Bhattarai, A., 2008. Electrical conductivity of a semidilute polyelectrolyte in mixed solvent media. Nepal Journal of Science and Technology, 9: 163-170.

-Cao, Q. and Bachmann, M., 2013. Polyelectrolyte adsorption on an oppositely charged spherical polyelectrolyte brush. Soft Matter, 9(20): 5087-5098.

-Hubbe, M.A., 2005. Microparticle programs for drainage and retention: 1-36. In: Rodriguez, J.M., (Ed.). Micro and Nanoparticles in Papermaking. TAPPI Press, Atlanta, 197p.

-Hubbe, M.A., Nanko, H. and McNeal, M.R., 2009. Retention aid polymer interactions with cellulosic surfaces and suspensions: A review. BioResources, 4(2): 850-906.

-Horvath, A.E., Lindström, T. and Laine, J., 2006. On the indirect polyelectrolyte titration of cellulosic fibers. Conditions for charge stoichiometry and comparison with ESCA. Langmuir, 22(2): 824-830.

-Khosravani, A., Latibari, A.J., Mirshokraei, S.A., Rahmaninia, M. and Mohammad Nazhad, M., 2010. Studying the effect of cationic starch-anionic nanosilica system on retention and drainage. BioResources, 5(2): 939-950.

-Kumar, M.N.R., 2000. A review of chitin and chitosan applications. Reactive and functional polymers, 46(1): 1-27.

-Laleg, M. and Pikulik, I.I., 1992. Strengthening of mechanical pulp webs by chitosan. Nordic Pulp and Paper Research Journal, 199(4): 174- 180.

-Lehmann, D., Seidel, F. and Zahn, D.R., 2014. Thin films with high surface roughness: thickness and dielectric function analysis using spectroscopic ellipsometry. SpringerPlus, 3: 82. doi: 10.1186/2193-1801-3-82

-Luo, Y. and Wang, Q., 2014. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. International Journal of Biological Macromolecules, 64: 353-367.

-Montiel‐González, Z., Luna‐Bárcenas, G. and Mendoza‐Galván, A., 2008. Thermal behaviour of chitosan and chitin thin films studied by spectroscopic ellipsometry. Physica Status Solidi (c), 5(5): 1434-1437.

-Mykhaylyk, T.A., Dmitruk, N.L., Evans, S.D., Hamley, I.W. and Henderson, J.R., 2007. Comparative characterisation by atomic force microscopy and ellipsometry of soft and solid thin films. Surface and Interface Analysis, 39(7): 575-581.

-Myllytie, P., Salmi, J. and Laine, J., 2009. The influence of pH on the adsorption and interaction of chitosan with cellulose. BioResources, 4(4): 1647-1662.

-Nicu, R., Bobu, E. and Desbrieres, J., 2011. Chitosan as cationic polyelectrolyte in wet-end papermaking systems. Cellulose Chemistry and Technology, 45(1): 105-111.

-Nicu, R., Bobu, E., Miranda, R. and Blanco, A., 2012. Flocculation efficiency of chitosan for papermaking applications. BioResources, 8(1): 768-784.

-Poksinski, M. and Arwin, H., 2003. In situ monitoring of metal surfaces exposed to milk using total internal reflection ellipsometry. Sensors and Actuators B: Chemical, 94(3): 247-252.

- Sabazoodkhiz, R., Rahmaninia M. and Ramezani, O., 2017. Interaction of chitosan biopolymer with silica nano-particle as a novel retention/drainage and reinforcement aid in recycled cellulosic fibers, Cellulose, 24: 3433–3444.

-Samoshina, Y., Nylander, T., Shubin, V., Bauer, R. and Eskilsson, K., 2005. Equilibrium aspects of polycation adsorption on silica surface: how the adsorbed layer responds to changes in bulk solution. Langmuir, 21(13): 5872-5881.

-TAPPI T 205 om-88, 2002. Forming handsheets for physical tests of pulp. TAPPI Press, Atlanta.

-TAPPI T 227 om-04, 2002. Freeness of pulp (Canadian standard method). TAPPI Press, Atlanta.

-Van de Steeg, H.G., Cohen Stuart, M.A., De Keizer, A. and Bijsterbosch, B.H., 1992. Polyelectrolyte adsorption: a subtle balance of forces. Langmuir, 8(10): 2538-2546.

-Wagberg, L., 2000. Polyelectrolyte adsorption onto cellulose fibres-A review. Nordic Pulp & Paper Research Journal, 15(5): 586-597.

-Wågberg, L. and Hägglund, R., 2001. Kinetics of polyelectrolyte adsorption on cellulosic fibers. Langmuir, 17(4): 1096-1103.

-Wang, F. and Hubbe, M.A., 2002. Charge properties of fibers in the paper mill environment. 1. Effect of electrical conductivity. Journal of Pulp and Paper Science, 28(10): 347-353.

-Winkler, R.G. and Cherstvy, A.G., 2013. Strong and Weak Polyelectrolyte Adsorption onto Oppositely Charged Curved Surfaces: 1-56. In: Müller M., (Ed.). Polyelectrolyte Complexes in the Dispersed and Solid State I. Springer Berlin Heidelberg.

-Xie, F., Lu, H., Nylander, T., Wagberg, L. and Forsman, J., 2016. Theoretical and experimental investigations of polyelectrolyte adsorption dependence on molecular weight. Langmuir, 32(23): 5721-5730.

-Yousefhashemi, S.M., Khosravani, A., Yousefi, H., 2019. Isolation of lignocellulose nanofiber from recycled old corrugated container and its interaction with cationicstarch-nanosilica combination to make paperboard. Cellulose, 26: 7207-7221.