نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی و محیط‌زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، ایران

2 استاد، گروه صنایع چوب و کاغذ، دانشکده منابع طبیعی و محیط‌زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، ایران

3 استاد، گروه صنایع چوب و کاغذ، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران.ایران

4 استاد، گروه فرایند، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشگاه فرایند، تهران، ایران

5 دانشیار، گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی و محیط‌زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، ایران

چکیده

با توجه به افزایش آلودگی‏ های زیست محیطی ناشی از تجمع ضایعات و زباله‏ های حاوی پلیمرهای نفتی پایدار، جایگزین نمودن این پلیمرها با استفاده از پلیمرهای زیستی و اصلاح مشکلات و کمبودهای آنها در فرایند تولید و در محصولات نهایی امری بااهمیت می‏ باشد. در این پژوهش به بررسی امکان تولید چندسازه پلی‏ لاکتیک اسید-پوسته شالی با ویژگی های قابل قبول و همچنین تاثیر استفاده از پرکننده ‏های معدنی کندسوز کننده آلومینیوم تری هیدرات (ATH) و هیدروکسید منیزیم (MDH) برروی خواص فیزیکی و حرارتی چندسازه تولیدی پرداخته شده است. نتایج نشان داد که دانسیته چندسازه پلی ‏لاکتیک اسید-پوسته شالی نسبت به چندسازه‏ های ساخته شده با پلیمرهای پایه نفتی پلی پروپیلن (PP) و پلی اتیلن دانسیته بالا (HDPE) بیشتر بود و افزودن پرکننده‏ های معدنی کندسوز کننده سبب افزایش دانسیته چندسازه شد. همچنین افزودن پرکننده‏ های معدنی کندسوز کننده سبب کاهش میزان جذب آب و واکشیدگی ضخامت آنها گردید بطوریکه از این لحاظ با نمونه‏ های حاوی پلیمرهای پایه نفتی قابل قیاس بود. نتایج آنالیز وزن‏ سنجی حرارتی (TGA) نشان داد که افزودن پرکننده ‏های معدنی کندسوز کننده سبب کاهش دما در محل پیک‏ های افت وزنی چندسازه و همچنین ملایم‏ تر شدن شیب افت وزنی نسبت به افزایش دما شده است.

کلیدواژه‌ها

-Albertsson, A.C. and Karlsson, S., 1994. Chemistry and biochemistry of polymer biodegradation. In: Chemistry and Technology of Biodegradable Polymers (Ed.: G.J.L. Griffin). Blackie, Glasgow, 794p.
-Alexandre, M. and Dubois, P., 2000. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep., 28, 1-63.
-Arao, Y., Nakamura, S., Tomita, Y., Takakuwa, K., Umemura, T. and Tanaka, T., 2014. Improvement on fire retardancy of wood flour/polypropylene composites using various fire retardants. Polymer Degradation and Stability, 100(1): 79-85.
-Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K. and Wintermantel, E., 2003. Thermal and mechanical properties of plasticized poly (L-lactic acid). J. Appl. Polym. Sci., 90, 1731-1738.
-Basu, A., Nazarkovsky, M., Ghadi, R., Khan, W. and Domb, A.J., 2016. Poly (lactic acid) - based nanocomposites. Polymers for Advanced Technologies.12p.
-Boateng A.A. and Skeete, D.A., 1990. Incineration of rice hull for use as a cementitious material: the guyana experience. Cement and Concrete Research, 20(5): 795-802.
-Bordes, P., Pollet, E. and Avérous, L., 2009. Nano-biocomposites: Biodegradable polyester/nanoclay systems. Prog.Polym. Sci., 34, 125-155.
-Chaudhary, D. and Jollands, M., 2004.Characterization of rice hull ash. Journal of Applied Polymer Science, 93(1): 1-8.
-Chindaprasirt, P., Kanchanda, P., Sathonsaowaphak, A., and Cao, H.T., 2007. Sulfate resistance of blended cements containing fly ash and rice husk ash. Construction and Building Materials, 21, 1356-1361.
-Chivrac, F., Pollet, E., Schmutz, M. and Avérous, L., 2010. Starch nano-biocomposites based on needle-like sepiolite clays. Carbohydrate Polymers, 80, 145-153.
-Choi, N.W., Mori, I. and Ohama, Y., 2006. Development of rice husks-plastics composites for building materials. Waste Management, 26(2): 189-194.
-Chrissafis, K. and Bikiaris, D., 2011. Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers. Thermochim. Acta, 523, 1–24.
-Fekete, E., Kun, D. and Móczó, J., 2018. Thermoplastic Starch/Wood Composites: Effect of Processing Technology, Interfacial Interactions and Particle Characteristics. Periodica Polytechnica Chemical Engineering, 62(2): 129-136.
-Garlotta, D., 2001. A literature review of poly (lactic acid). Journal of Polymers and the Environment, 9(2): 63–84.
-Gonçalves, C., Gonçalves, I.C., Magalhães, F.D. and Pinto, A.M., 2017. Poly (lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review. Polymers 2017, 9, 269-303.
-González, A., Dasari, A., Herrero, B., Plancher, E., Esteban, A., Lim, S.H., and Santarén J., 2012. Fire retardancy behavior of PLA based nanocomposites. Polymer Degradation and Stability, 97: 248-256.
-Gross, R.A., and Kalra, B., 2002. Biodegradable polymers for the environment. Science, 297(5582): 803-807.
-Guzmán, M. and Murillo, E.A., 2018.Structural, thermal, rheological, morphological and mechanical properties of thermoplastic starch obtained by using hyperbranched polyester polyol as plasticizing agent. DYNA, 85(206): 178-186.
-Hamid, M.R.Y., Ghani, M.H.A., Ahmad, S. 2012. Effect of antioxidants and fire retardants as mineral fillers on the physical and mechanical properties of high loading hybrid biocomposites reinforced with rice husks and sawdust. Industrial Crops and Products, 40: 96-102.
-Jacobsen, S., Fritz, H.G., 1999.Plasticizing polylactide-the effect of different plasticizers on the mechanical properties.Polym. Eng. Sci., 39(7): 1303-1310.
-Kalagar, M., Baziyar, B., Khademi Eslam, H., Ghasmi, E. and Hemmasi, A.H., 2015. The investigation on composites produced using polylactic acid/wheat straw fibers treated with silane. Iranian Journal of Wood and Paper Science Research, 30(2): 207-219.
-Kashiwagia, T., Grulke, E., Hilding, J., Groth, K., Harris, K., Butlera, K., Shields, J., Kharchenko, S., and Douglas J., 2004. Thermal and flammability properties of polypropylene/ carbon nanotube nanocomposites. Polymer, 45: 4227-4239.
-Kenechi, N.O., Linus, C. and Kayode, A., 2016. Utilization of Rice Husk as Reinforcement in Plastic Composites Fabrication- A Review. American Journal of Materials Synthesis and Processing, 1(3): 32-36.
-Kiliaris, P., Papaspyrides, C.D., 2010. Polymer/layered silicate nanocomposites: an overview of flame retardancy. Progress in Polymer Science, 35: 902-958.
-Klyosov, A.A., 2007. Wood‐Plastic Composites.John Wiley & Sons, Inc., Hoboken, New Jersey. 698p.
-Kord, B., and Roohani, M., 2016.Thermal properties and fire behavior of PLA nanocomposite films. J. of Wood & Forest Science and Technology, 23(2): 185-201.
-Kulinski, Z., Piorkowska, E., 2005. Crystallization, structure and properties of plasticized poly (Llactide). Polymer, 46, 10290-10300.
-Kutz, M., 2017. Applied Plastics Engineering Handbook. Processing, Materials, and Applications (2nd ed.). William Andrew Publishing, Norwich. 784p.
-Laoutid, F., Bonnaud, L., Alexandre, M., Lopezcuesta, J., Dubois, P., 2009. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Material Science Engineering, 63(3): 100-125.
-Letcher, T., 2012. Comprehensive Renewable Energy (1st ed.). Elsevier, New York. 422p.
-Lomelí-Ramírez, M.G., Kestur, S.G., Manríquez-González, R., Iwakiri, S., Muniz, G.B. and Flores-Sahagun, T.S., 2014. Bio-composites of cassava starch-green coconut fiber: Part II-Structure and properties. Carbohydrate Polymers 102, 576-583.
-Madhavan Nampoothiri, K., Nair, N.R. and John, R.P., 2010.An Overview of the Recent Developments in Polylactide (PLA) Research. Bioresource Technology, 101, 8493-8501.
-Mirmehdi, S.M., Zeinaly, F. and Dabbagh, F., 2014.Date palm wood flour as filler of linear low-density polyethylene. Composites: Part B, 56, 137-141.
-MohdZaina, A.H., Kahara, A.W.M. and Noriman N.Z., 2016.Chemical-Mechanical Hydrolysis Technique of Modified Thermoplastic Starch for Better Mechanical Performance. Procedia Chemistry, 19, 638-645.
-Nourbakhsh, A., Ashori, A. and Kazemi Tabrizi, A., 2014. Characterization and biodegradability of polypropylene composites using agricultural residues and waste fish. Composites: Part B, 56, 279-283.
-Olivato, J.B., Marini, J., Pollet, E., Yamashita, F., Grossmann, M.V.E. and Avérous, L., 2015. Elaboration, morphology and properties of starch/polyester nano-biocomposites based on sepiolite clay. Carbohydrate Polymers, 118, 250-256.
-Qin, H., Zhang, S., Zhao, C., Hu, G. and Yang, M., 2005. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene, Polymer, 46: 8386-8395.
-Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K. and Mohanty, A.K., 2013. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog.Polym. Sci., 38(10-11):1653-1689.
-Ren, J., Dang, K.M., Pollet, E. and Avérous, L., 2018. Preparation and Characterization of Thermoplastic Potato Starch/Halloysite Nano-Biocomposites: Effect of Plasticizer Nature and Nanoclay Content. Polymers, 10, 808, p. 15.
-Rhim, J.W., Hong, S.I., and Ha, C.S., 2009.Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT- Food Science and Technology, 42: 612–617.
-Rhim, J.W., Park, H.M. and Ha, C.S., 2013.Bio-Nanocomposites for Food Packaging Applications. Progress in Polymer Science 38, 1629-1652
-Siddique, R. and Cachim, P., 2018. Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications (1st ed.). Woodhead Publishing, Amsterdam. p. 640.
-Stepto, R.F.T., 2003. The processing of starch as a thermoplastic.Macromol.Symp. 201, 203-212.
-Suppakarn, N. and Jarukumjorn, K., 2009. Mechanical properties and flammability of sisal/PP composites: Effect of flame retardant type and content. Composites: Part B, 40(7): 613-618.
-Suryanegara, L., Nugraha, R.A. and Achmadi, S.S., 2017. Improvement of thermal and mechanical properties of composite based on polylactic acid and microfibrillated cellulose through chemical modification. IOP Conf. Ser.: Mater. Sci. Eng. 223 012032.
-Thomas, S., Mathew, A.P., Visakh, P.M., 2013. Advances in Natural Polymers: Composites and Nanocomposites. Springer-Verlag Berlin Heidelberg, 424p.
-Thompson, R.C., Moore, C.J., Saal, F.S.V., and Swan, S.H., 2009. Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B, 364(1526): 2153–2166.
-Torgal, F.P., Lourenco, P., Labrincha, J., Chindaprasirt, P. and Kumar, S., 2015. Eco-Efficient Masonry Bricks and Blocks (1st ed.). Woodhead Publishing, Amsterdam. 548p.
-Wilpiszewska, K. and Spychai, T., 2006.Heat plasticisation of starch by extrusion in the presence of plasticizers. International Polymer Science and Technology, 33(10): 53-58.
-Zaikov, G.E., and Lomakin, S.M., 2002. Ecological issue of polymer flame retardancy. Journal of Applied Polymer Science, 86(5): 2449-2462.
-Zeinaly, F., Saraeian, A.R., Aryaie Monfared M.H. and Kazemi Tabrizi, A., 2016.Investigating the effect of using oxygen delignification process on bagasse soda pulp properties. Iranian Journal of Wood and Paper Science Research, 31(2): 261-279.