Ahari, H. and Soufiani, S., 2021. Smart and active food packaging insights in novel food packaging. Frontiers in Microbiology, 12: 657233.
-Alamdari, NE., Aksoy, B., Aksoy, M., Beck, BH. and Jiang, Z., 2020. A novel paper-based and pH-sensitive intelligent detector in meat and seafood packaging. Talanta, 224: 121913.
-Anghel, N., Dinu, MV., Zaltariov, M., Pamfil, D. and Spiridon, L., 2021. New cellulose-collagen-alginate materials incorporated with quercetin, anthocyanins and lipoic acid. International Journal of Biological Macromolecules, 181: 30-40.
-Boulekbache-Makhlouf, L., Medouni, L., Medouni-Adrar, S., Arkoub, L. and Madani, K., 2013. Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Industrial Crops and Products, 49: 668– 674.
-Campos-Requena, VH., Rivas, BL., Perez, MA., Garrido-Miranda, KA. and Pereira, ED., 2018. Release of essential oil constituent from thermoplastic starch/layered silicate bio nanocomposite film as a potential active packaging material. European Polymer Journal, 109: 64-71.
-Choi, I., Lee, JY., Lacroix, M. and Han, J., 2016. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry, 218: 122-128.
-Davies, KM., 2004. Plant Pigments and Their Manipulation, Annual Plant Reviews, Volume 14. CRC Press, USA, 352p.
-Erna, KH., Felicia, WXL., Vonnie, JM., Rovina, K., Yin, KH. and Nur’Aqilah, MN., 2022. Synthesis and physicochemical characterization of polymer film-based anthocyanin and starch. Biosensor, 12(4): 211.
-Ghaani, M., Cozzolino, CA., Castelli, G. and Farris, S., 2016. An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology, 51: 1-11.
-Golasz, LB., Silva, J. and Silva, SB., 2013. Film with anthocyanin as an indicator of chilled pork deterioration. Ciência e Tecnologia de Alimentos (Food Science and Technology), 33 (suppl 1).
-Golmohammadi, H., Morales-Narvaez, E., Naghdi, T. and Merkoci, A., 2017. Nanocellulose in sensing and biosensing. Chemistry of Materials, 29(13): 5426-5446.
-Hu, Y., Wang, Y. and Tang, Y., 2019. Analysis of the correlation between the freshness indices of pork and its pork exudate. Acta Universitatis Cibiniensis Series E: Food Technology, 23: no.1.
- Kuswandi, B., Wicaksono, Y., Jayus., Abdullah, A., Heng, LY. and Ahmad, M., 2011. Smart packaging: sensors for monitoring of food quality and safety. Journal of Food Measurement and Characterization, 5: 137-146.
-Liang, T. and Wang, L., 2017. A pH-sensing film from tamarind seed polysaccharide with litmus lichen extract as an indicator. Polymers, 10(1): 1-10.
-Maciel, VBV., Yoshida, CMP. and Franco, TT., 2015. Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydrate Polymers, 132: 537-545.
-Nerin, C., Aznar, M. and Carrizo, D., 2016. Food contamination during food process. Trends in Food Science & Technology, 48: 63-68.
-Neubauerova, K., Carneiro, MCCG., Rodrigues, LR., Moreira, FTC. and Sales, MGF., 2020. Nanocellulose- based biosensor for colorimetric detection of glucose. Sensing and Bio-Sensing Research, 29: 100368.
-Ozkan, M., Karakoç, A., Borghei, M., Wiklund, J., Rojas, OJ. and Paltakari, J., 2019. Machine learning assisted design of tailor-made nanocellulose films: a combination of experimental and computational studies. Polymer Composites, 40(10): 4013-4022.
-Pereira Jr, VA., de Arruda, INQ. and Stefani, R., 2014. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time-Temperature Indicators for application in intelligent food packaging. Food Hydrocolloids, 43: 180-188.
-Phan, D., Debeaufort, F., Luu, D. and Voilley, A., 2005. Functional properties of edible agar-based and starch-based films for food quality preservation. Journal Of Agricultural and Food Chemistry, 53(4): 973-981.
-Rapisarda, P., Fanella, F. and Maccarone, E., 2000. Reliability of Analytical Methods for Determining Anthocyanins in Blood Orange Juices. Journal of Agricultural and Food Chemistry, 48(6): 2249-2252.
-Safitri, E., Humaira, H., Murniana, M., Nazaruddin, N., Iqhrammullah, M., Md Sani, ND., Esmaeili, CH., Susilawati, S., Mahathir, M. and Nazaruddin, SL., 2021. Optical pH Sensor Based on Immobilization Anthocyanin from Dioscorea alata L. onto Polyelectrolyte Complex Pectin–Chitosan Membrane for a Determination Method of Salivary pH. Polymers, 13(8): 1276.
-Sobhan, A., Muthukumarappan, K. and Wei., L., 2021. Biosensors and biopolymer-based nanocomposites for smart food packaging: challenges and opportunities. Food Packaging and Shelf Life, 30: 100745.
-Sobhan, A., Muthukumarappan, K., Cen, Z. and Wei, L., 2019. Characterization of nanocellulose and activated carbon nanocomposite films’ biosensing properties for smart packaging. Carbohydrate Polymers, 225: 115189.
-Song, T., Tanpichai, S. and Oksman, K., 2016. Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose, 23: 1925-1938.
-Soni, B., Hassan, EB. and Mahmoud, B., 2015. Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydrate Polymers, 134: 581-589.
-Sonker, AK., Rathore, K., Nagarale, RK. and Verma, V., 2017. Crosslinking of Polyvinyl Alcohol (PVA) and Effect of Crosslinker Shape (Aliphatic and Aromatic) Thereof. Journal of Polymers and the Environment, 26: 1782-1794.
-Tena, N. and Asuero, AG., 2022. Up-To-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants, 11(2): 286.
-Todaro, A., Cimino, F., Rapisarda, P., Catalano, AE., Barbagallo, RN. and Spagna, G., 2008. Recovery of anthocyanins from eggplant peel. Food Chemistry, 114(2): 434-439.
-Ueda, T., Ishigami, A., Thumsorn, S., Kurose, T., Kobayashi, Y. and Ito, H., 2022. Structural, Rheological, and Mechanical Properties of Polyvinyl Alcohol Composites Reinforced with Cellulose Nanofiber Treated by Ultrahigh-Pressure Homogenizer. Materials today communications, 33: 104316.
-Vilela, C., Moreirinha, C., Domingues, EM., Figueiredo, FML., Almeida, A. and Freire, CSR., 2019. Antimicrobial and Conductive Nanocellulose-Based Films for Active and Intelligent Food Packaging. Nanomaterials, 9(7): 980.
- Wahyuningsih, S., Wulandari, L., Wartono, MW., Munawaroh, H. and Ramelan, AH., 2017. The Effect of pH and Color Stability of Anthocyanin on Food Colorant. IOP Conference Series: Materials Science and Engineering, 193: 012047.
-Wang, SY., Bowman, L. and Ding, M., 2008. Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. Food Chemistry, 107(3): 1261–1269.
-Wu, C., Sun, J., Lu, Y., Wu, T., Pang, J. and Hu, Y., 2019. In situ self-assembly chitosan/ε-polylysine bio nanocomposite film with enhanced antimicrobial properties for food packaging. International Journal of Biological Macromolecules, 132: 385-392.
-Www.fao.org/newsroom/detail/plastics in agrifood systems the good the bad and the ugly/en.
-Yang, Y., Yu, X., Zhu, Y., Zeng, Y., Fang, C., Liu, Y., Hu, S., Ge, Y. and Jiang, W., 2022. Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins. Food Chemistry, 393: 133342.
-Yong, H., Wang, X., Bai, R., Miao, Z., Zhang X. and Liu, J., 2019. Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocolloids, 90: 216–224.
-Yong, H., Wang, X., Zhang, X., Liu, Y., Qin, Y. and Liu, J., 2019. Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocolloids, 94: 93-104.
-Yoshida, CMP., Maciel, VBV., Mendonca, MED. and Franco, TT., 2013. Chitosan biobased and intelligent films: monitoring pH variations. LWT-Food Science and Technology, 55(1): 83-89.
-Yousefi, P., Hamedi, S., garmaroody, ER. and Koosha, M., 2020. Antibacterial nanobiocomposite based on halloysite nanotubes and extracted xylan from bagasse pith. International Journal of Biological Macromolecules, 160: 276–287.
-Zhou, YM., Fu, SY., Zheng, LM. and Zhan, HY., 2012. Effect of nanocellulose isolation techniques on the formation of reinforced poly (vinyl alcohol) nanocomposite films. Express Polymer Letters, 6(10): 794-804.