نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار گروه سلولزی و بسته بندی، پژوهشکده شیمی و پتروشیمی، پژوهشگاه استاندارد، کرج، صندوق پستی 139-31745، ایران

چکیده

این تحقیق با هدف بررسی تأثیر حضور همزمان نانوکریستال سلولز و نانورس بر رفتار زیست‌تخریب‌پذیری و مهاجرت فیلم های برپایه پلی لاکتیک اسید انجام شد. فیلم های پلی لاکتیک اسید و نانوکامپوزیت های آن حاوی درصدهای مختلف نانوکریستال سلولز و نانورس (0، 3 و 5 درصد وزنی) با استفاده از روش قالب گیری حلال ساخته شد. برای بهبود سازگاری و اختلاط پذیری با پلیمر، نانوکریستال سلولز با اسید اولئیک وارد واکنش شده و اصلاح شد. سپس، برای ارزیابی رفتار زیست تخریب پذیری و مهاجرت فیلم ها، میزان کاهش وزن در آنزیم و دفن در خاک و کمپوست و میزان مهاجرت کلی نمونه ها اندازه گیری شد. نتایج نشان داد که میزان زیست تخریب پذیری کامپوزیت ها در محیط آنزیمی، خاک و کمپوست، با افزایش مقدار نانوذرات کاهش می یابد. از طرف دیگر با افزودن نانوکریستال سلولز و نانورس به ماده زمینه پلیمری میزان مهاجرت کلی کامپوزیت ها کاهش یافت. این مسئله را می توان به چسبندگی بهتر نانوذرات با ماده زمینه پلیمری و تشکیل مسیرهای پرپیچ و خم نسبت داد.

کلیدواژه‌ها

موضوعات

-Almasi, H., Ghanbarzadeh, B., and Dehghannia, J. 2014. Properties of Poly(lactic acid) nanocomposite film containing modified cellulose nanofibers,  Iranian Journal of Polymer Science and Technology 26(6): 485-497.
 -Bordes, P., Pollet, E., and Avérous, L. 2009. Nano-biocomposites: Biodegradable polyester/nanoclay systems, Progress in Polymer Science 34(2): 125–155.
-Chuensangjun, C., Pechyen, C., and Sarote Sirisansaneeyakul, S. 2013. Degradation behaviors of different blends of polylactic acid buried in soil, Energy  Procedia 34: 73–82.
-Dadashi, S., Mousavi, M., Emam D-Jomeh, Z., and Oromiehie, A. 2012. Films based on Poly(lactic acid) biopolymer: effect of clay and cellulosic nanoparticles on their  physical, mechanical and structural properties, Iranian Journal of Polymer Science and Technology 25(2): 127-136.
-Drumright, R.E., Gruber, P.R., and Henton, D.E. 2000. Polylactic acid technology, Advanced Materials 12: 1841–1846.
-De Souza Lima, M.M., Wong, J.T., Paillet, M., Borsali, R., and Pecora, R. 2003. Translational and Rotational Dynamics of Rodlike Cellulose Whiskers, Langmuir, 19(1): 24-29.
-EN-1186.  2000.  Overall  migration  testing  for  packaging  and  other  food  contact materials. 
-Fortunati, E.,   Peltzer, M., Armentano, L., Torre, L., Jiménez, A., and Kenny, J.M.,  2012. Effects  of  modified  cellulose  nanocrystals  on  the  barrier  and  migration  properties of  PLA  nano-biocomposites. Carbohydrate  Polymers,  90: 948– 956.
 -Fukushima, K.,  Abbate, C., Tabuani, D., Gennari, M., and Camino, G., 2009.Biodegradation of poly(lactic acid) and its nanocomposites. Polymer Degradation and Stability, 94(10): 1646–1655.
-Garlotta, D., 2001. A literature review of poly(lactic acid). Journal of Polymers and the Environment, 9(2):  63–84.
-Hakkarainen, M., Karlsson, S., and Albertsson, A.C., 2000. Rapid (bio)degradation of polylactide by mixed culture of compost microorganisms-low molecular weight products and matrix changes. Polymer 41: 2331–2338.
-Ibach, R.E., Clemons, C.M., and Schumann, R.L., 2007. Wood-plastic composites with reduced moisture: Effects of chemical modification on durability in the laboratory and field. In: 9th international conference on wood and biofiber plastic composites, Madison, Wisconsin, USA.
-Karamanlioglu, M., 2013. Environmental degradation of the compostable plastic packaging material poly(lactic) acid and its impact on fungal communities in compost. PhD Thesis, University of Manchester, 198p.
-Krishnamachari, P., Zhang, J., Lou, J., Yan, J., and Uitenham, L., 2009. Biodegradable poly(lactic acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties. International Journal of Polymer Analysis and Characterization, 14(4): 336-350.
-Kord, B., Jari, E., Najafi, A.,  and Tazakorrezaie, V., 2014. Effect of nanoclay on the decay resistance and physicomechanical properties of natural fiber-reinforced plastic composites against white-rot fungi  (Trametes versicolor). Journal of Thermoplastic Composite Materials, 27(8): 1085-1096.
-Kord, B. and Roohani, M., 2015. Morphological, mechanical and barrier properties of   polylactic acid/cellulose nanocrystal/nanoclay composite films. Journal of Wood and Forest Science and Technology, 21 (4), 41- 60.
-Lee, S.H., and Wang, S., 2006. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites: Part A, 37: 80–91.
-Lim, L.T., Auras, R., and Rubino, M., 2008. Processing technologies for poly(lactic acid). Progress in Polymer Science, 33: 820–852.
-Liu, D. Y., Yuan, X. W., Bhattacharyya, D.  and Easteal A. J., 2010. Characterisation of solution cast cellulose nanofiber reinforced poly(lactic acid) Express Polymer Letters, 4(1): 26–31.
-Mutsuga,  M.,  Kawamura,  Y.,  and  Tanamoto,  K.,  2008.  Migration  of  lactic  acid  lactide  and  oligomers  from  polylactide  food-contact  materials.  Food  Additives  and Contaminants,  25:  1283–1290.

-Nieddu, E., Mazzucco, L., Gentile, P., Benko, T., Balbo, V., Mandrile, R., and Ciardelli, G., 2009. Preparation and biodegradation of clay composites of PLA. Reactive and Functional Polymers, 9(6): 371–379.

-Noushirvani, N., Ghanbarzadeh, B., and Entezami, A.K.,  2011. Comparison of tensile, permeability and color properties of starch-based bionanocomposites containing two types of fillers: sodium montmorilonite and cellulose nanocrystal. Iranian Journal of Polymer Science and Technology, 24(5): 391-402
-Paul, M.A., Delcourt, C., Alexandre, M.,  Degée, P.H., Monteverde, F., and Dubois, P.H., 2005. Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polymer Degradation and Stability, 87(3), 535–542.
-Rhim, J.W., Hong, S.I., and Ha, C.S., 2009. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT- Food Science and Technology, 42: 612–617.
-Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., and Dufresne, A., 2008. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal, 44(8): 2489–2498.
-Roohani, M., Kord, B., Motie, N., and Sharari, M., 2014. Biodegradation behaviors of cellulose nanocrystals -PVA nanocomposites.  Iranian Journal of Wood and Paper Industries, 5(2): 1-14.

-Roy, P.K.,  Hakkarainen, M., and Albertsson, A.C., 2012. Nanoclay effects on the degradation process and product patterns of polylactide.  Polymer Degradation and Stability,  97(8), 124-1260.

-Shogrena, R.L., Doane, W.M., Garlotta, D.,  Lawton, J.W., and Willett, J.L., 2003. Biodegradation of starch/polylactic acid/poly(hydroxyester-ether) composite bars in soil. Polymer Degradation and Stability, 79: 405–411.
-Sinha Ray, S., and Okamoto, M., 2003. Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromolecules Rapid Communication 24: 815–840.
-Singh G., Kaur N., Bhunia H., Bajpai P.K., Mandal U.K., 2011. Degradation behaviors of linear low-density polyethylene and poly(Llactic acid) blends. Journal of Applied Polymer Science, 124:1993-1998.