نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران

2 استادیار، گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران

3 استادیار، بخش تحقیقات گیاهان دارویی، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

در پژوهش حاضر کیفیت سلولز گیاه استبرق (Calotropis procera) در 14 اکوتیپ (استان هرمزگان: فرودگاه، تازیان، ایسین، سورو، حاجی‌آباد، تنگ زاغ، گنج، آبماه، قطب آیاد، گنو، میناب، گهکم؛ استان فارس: قلاتویه و استان بوشهر) جهت بررسی پتانسیل‌های گیاه در رویشگاه طبیعی و بهره‌مندی از آن در برنامه‌های اصلاحی و اهلی‌سازی مورد ارزیابی قرار گرفت. نمونه‌ها در مرحله گلدهی در خرداد و تیرماه سال 1398 انتخاب و جمع‌آوری شدند. در این پژوهش، استخراج و جداسازی هولوسلولز و آلفاسلولز و نیز ابعاد الیاف از لحاظ طول و قطر الیاف، قطر حفره سلولی و ضخامت دیواره سلولی مورد بررسی قرار گرفت. از نظر کیفیت سلولز از بین 14 اکوتیپ مورد مطالعه بیشترین میزان هولوسلولز و آلفاسلولز به ترتیب در اکوتیپ هرمزگان- آبماه 59/54 و اکوتیپ بوشهر-حیدریه 1/61 درصد بود. با بررسی مقایسه میانگین ابعاد الیاف نشان داده شد که بیشترین طول الیاف در اکوتیپ میناب (81/0 میلی‌متر) و تازیان (78/0 میلی‌متر) بود. همچنین بیشترین قطر الیاف، قطر حفره سلولی و ضخامت دیواره سلولی به ترتیب 87/34، 58/23 و 64/5 میکرون در اکوتیپ ایسین بود. به طورکلی نتایج نشان داد با توجه به مناسب بودن الیاف و درصد سلولز زیاد آن، این گونه می‌تواند جهت استفاده در صنایع، مورد بررسی جامع قرار گیرد. با توجه به اینکه کشور ما، از منابع چوبی کمی برخوردار می‌باشد و از طرف دیگر این گونه خودرو، در مناطق جنوبی خشک و با منابع آبی کم کشـورمان از رشد مناسبی برخوردار می‌باشد، می‌تواند به‌عنوان یک منبع چوبی در صنایع سلولزی مـورد بررسـی کلی قرار گیرد و در صورت مناسب بودن، به صورت گسترده کشت شود.

کلیدواژه‌ها

-Amel, A. B., Tahir Paridah, M., Sudin, R., Anwar, U. M. K., and Hussein, A. S., 2013. Effect of fiber extraction methods on some properties of kenaf bast fiber. Industrial Crops and Products, 46: 117- 123.
-Bode, H.B., Zeeck, A., Plückhahn, K. and Jendrossek, D., 2000. Physiological and chemical investigations into microbial degradation of synthetic poly (cis-1, 4-isoprene). Applied and Environmental Microbiology, 66(9): 3680-3685.
-Chandra, J., George, N. and Narayanankutty, S. K., 2016. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate polymers, 142: 158-166.
-Cheng, H. N., Dowd, M. K., Selling, G. W. and Biswas, A., 2010. Synthesis of cellulose acetate from cotton byproducts. Carbohydrate polymers, 80(2): 449-452.
-Espino, E., Cakir, M., Domenek, S., Román-Gutiérrez, A. D., Belgacem, N. and Bras, J., 2014. Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Industrial Crops and Products, 62: 552-559.
-Galiwango, E., Rahman, N. S. A., Al-Marzouqi, A. H., Abu-Omar, M. M. and Khaleel, A. A., 2019. Isolation and characterization of cellulose and α-cellulose from date palm biomass waste. Heliyon, 5(12): p.e02937.
-Hassan, L. M., Galal, T. M., Farahat, E. A. and El-Midany, M. M., 2015. The biology of Calotropis procera (Aiton) WT. Trees, 29(2): 311-320.
-Hernandez, C. C., Ferreira, F. F. and Rosa, D. S., 2018. X-ray powder diffraction and other analyses of cellulose nanocrystals obtained from corn straw by chemical treatments. Carbohydrate polymers, 193: 39-44.
-Ilyas, R. A., Sapuan, S. M., Ishak, M. R. and Zainudin, E. S., 2017. Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre. BioResources, 12(4): 8734-8754.
-Jiang, F. and Hsieh, Y. L., 2015. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers, 122: 60-68.
-Johar, N., Ahmad, I. and Dufresne, A., 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37(1): 93-99.
-Kallel, F., Bettaieb, F., Khiari, R., García, A., Bras, J. and Chaabouni, S. E., 2016. Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Industrial Crops and Products, 87: 287-296.
-Kamrani, S., Sarayan, A. R. and Akbarpour, I., 2010. Studying from the Properties of Chemi-Mechanical Pulping and Alkaline Peroxide Mechanical Pulping of Wheat Straw Golestan province. Iranian Journal of Wood and Paper Science Research, 25:1 (In Persian).
-Knudsen, H. D. and Zeller, R. D., 1993. The Milkweed Business in New Crops, Wiley, New York, 422 pp.
-Leite, A. L. M. P., Zanon, C. D. and Menegalli, F. C., 2017. Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydrate polymers, 157:  962-970.
-Liu, C., Li, B., Du, H., Lv, D., Zhang, Y., Yu, G., Mu, X. and Peng, H., 2016. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydrate polymers, 151: 716-724.
-Liu, Y., 2005. Diallel and Stability Analysis of Kenaf (Hibiscus cannabinus L.) in South Africa. Master of Science in Agriculture Faculty of Natural and Agricultural Sciences Department of Plant Sciences: Plant Breeding University of the Free State Bloemfontein, South Africa.
-Maji, S., Mehrotra, R. and Mehrotra, S., 2013. Extraction of high quality cellulose from the stem of Calotropis procera. South Asian J Exp Biol, 3(3), pp.113-118.
-Nasser, R. A., Al-Mefarrej, H. A., Khan, P. R. and Alhafta, K. H., 2012. Technological properties of Calotropis procera (AIT) wood and its relation to utilizations. American-Eurasian Journal of Agricultural & Environmental Sciences, 12(1): 5-16.
-Parihar, G., Sharma A., Ghule S., Sharma P., Deshmukh P. and Srivastava D. N., 2011. Anti-inflammatory effect of Calotropis procera root bark extract. Asian Journal of Pharmacy and Life Science,1(1): 29–44.
-Reddy, N. and Yang, Y., 2007. Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems. Journal of agricultural and food chemistry, 55(14): 5569-5574.
-Rivas, R., Frosi, G., Ramos, D. G., Pereira, S., Benko-Iseppon, A. M. and Santos, M. G., 2017. Photosynthetic limitation and mechanisms of photoprotection under drought and recovery of Calotropis procera, an evergreen C3 from arid regions. Plant physiology and biochemistry, 118: 589-599.
-Saurabh, C. K., Mustapha, A., Masri, M. M., Owolabi, A. F., Syakir, M. I., Dungani, R., Paridah, M. T., Jawaid, M. and Abdul Khalil, H. P. S., 2016. Isolation and characterization of cellulose nanofibers from Gigantochloa scortechinii as a reinforcement material. Journal of Nanomaterials, pp 8.
-Sharma, A. K., Kharb, R, and Kaur R., 2011. Pharmacognostical aspects of Calotropis procera (Ait.) R. Br. International Journal of Pharma and Bio Sciences, 2(3): 480–8.
-Sun, X. F., Xu, F., Sun, R. C., Fowler, P. and Baird, M. S., 2005. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate research, 340(1): 97-106.