نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه علوم و صنایع چوب و کاغذ، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران

2 استادیار، گروه علوم و صنایع چوب و کاغذ، واحد آستارا، دانشگاه آزاد اسلامی، آستارا، ایران

3 مربی، گروه مهندسی صنایع، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران

4 دانشجوی دکتری علوم و مهندسی چوب و صنایع سلولزی، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

چکیده

هدف این پژوهش بررسی خصوصیات فیزیکی و مکانیکی نانوچندسازه چوب-پلاستیک حاصل از نانولوله کربنی خام و عامل‌دار

می باشد. بدین منظور، آردچوب به مقدار ثابت 50 درصد، نانولوله‌های کربنی خام در 3 سطح 0، 1 و 2 درصد و جفت‌کننده مالئیکی در دو سطح 0 و 3 درصد در زمینه پلی‌اتیلن‌سنگین مورد استفاده قرار گرفت. همچنین از نانولوله کربنی عامل‌دار جهت تقویت کارایی نانوچندسازه در دو سطح 1 و 2 درصد به صورت جداگانه استفاده شد. مواد در مخلوط‌کن داخلی(Haake) با هم آمیخته شده و سپس نمونه‌ها توسط دستگاه پرس گرم ساخته شدند. نتایج نشان داد که با افزایش مقدار نانولوله کربنی از 0 به 2 درصد وزنی، استحکام و مدول الاستیسته کششی نمونه‌ها به ترتیب 8/58 و 6/12 درصد افزایش و جذب آب و واکشیدگی ضخامتی به میزان 5/54 و 4/19 کاهش یافت. چندسازه‌های حاوی 2 درصد وزنی نانولوله کربنی در مقایسه با چندسازه شاهد، مقاومت به ضربه بالاتری از خود نشان دادند. عامل جفت کننده مالئیکی اثر مثبتی بر کارایی نانوچندسازه‌ها داشت. خواص فیزیکی و مکانیکی نمونه‌ها با افزودن جفت کننده و نانولوله کربنی عامل‌دار بهبود محسوسی یافت. نتایج توسط میکروسکوپ الکترونی روبشی نیز مورد تأیید قرار گرفت.

کلیدواژه‌ها

موضوعات

-Ahmadi, H., Hemmasi, A.H. and Mahdavi, S., 2015. Investigation on mechanical properties of HDPE recycled composite filled by furfural residue produced from bagasse. Iranian Journal of Wood and Paper Science Research, 30 (3): 376-387.
-Bag, D.S., Dubey, R., Zhang, N., Xie, J., Varadan, V.K., Lal, D. and Mathur, G.N., 2004. Chemical functionalization of carbon nanotubes with 3-methacryloxypropyltrimethoxysilane (3-MPTS).Smart materials and structures, 13(5): 1263-1267.
-Bai, J.B. and Allaoui, A., 2003. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Composites Part A: applied science and manufacturing, 34(8): 689-694.
-Bilbao-Sainz, C., Bras, J., Williams, T., Sénechal, T. and Orts, W., 2011. HPMC reinforced with different cellulose nano-particles. Carbohydrate polymers, 86(4): 1549-1557.
-Chowdhury, J.A. and Wolcott, M.P., 2007. Compatibilizer selection to improve mechanical and moisture properties of extruded wood-HDPE composites. Forest products journal, 57(9): 46-54.
-Eichhorn, S.J., Baillie, C.A., Zafeiropoulos, N., Mwaikambo, L.Y., Ansell, M.P., Dufresne, A.A., Entwistle, K.M., Herrera-Franco, P.J., Escamilla, G.C., Groom, L. and Hughes, M., 2001. Current international research into cellulosic fibres and composites. Journal of materials Science, 36(9): 2107-2131.
-Espert, A., Vilaplana, F. and Karlsson, S., 2004. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Composites Part A: Applied science and manufacturing, 35(11): 1267-1276.
-Farsheh, A.T., Talaeipour, M., Hemmasi, A.H., Khademieslam, H. and Ghasemi, I., 2011. Investigation on the mechanical and morphological properties of foamed nanocomposites based on wood flour/PVC/multi-walled carbon nanotube. BioResources, 6(1): 841-852.
-Farsi, M., 2010. Wood-plastic composites: Influence of wood flour chemical modification on the mechanical performance. Journal of reinforced plastics and composites, 29(24): 3587-3592.
-Farsi, M. and Sani, F.M., 2014. Effects of multi-walled carbon nanotubes on the physical and mechanical properties of high-density polyethylene/wood flour nanocomposites. Journal of Thermoplastic Composite Materials, 27(8): 1139-1154.
-Ghasemi, I., Farsheh, A.T. and Masoomi, Z., 2012. Effects of multi‐walled carbon nanotube functionalization on the morphological and mechanical properties of nanocomposite foams based on poly (vinyl chloride)/(wood flour)/(multi‐walled carbon nanotubes). Journal of Vinyl and Additive Technology, 18(3): 161-167.
-Gojny, F.H., Wichmann, M.H., Fiedler, B. and Schulte, K., 2005. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Composites science and technology, 65(15-16): 2300-2313.
-Kazemi Najafi, S., Younesi Kordkheili, H. and Nasiri Avanaki. R. 2010. Effect of sea water on compatibilizer performance in water absorption behavior of wood-polypropylene composites. Journal of Forest and Wood Products, 62(3): 169-186.
-Kim, J.K. and Pal, K., 2010. Recent advances in the processing of wood-plastic composites. Springer. Netherlands, 176p
-Kordkheili, H.Y., Farsi, M. and Rezazadeh, Z., 2013. Physical, mechanical and morphological properties of polymer composites manufactured from carbon nanotubes and wood flour. Composites Part B: Engineering, 44(1): 750-755.
-Kordkheili, H.Y., Hiziroglu, S. and Farsi, M., 2012. Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber. Materials & Design, 33: 395-398.
-Park, B.D. and Kadla, J.F., 2012. Thermal degradation kinetics of resole phenol-formaldehyde resin/multi-walled carbon nanotube/cellulose nanocomposite.  Thermochimica acta, 540: 107-115.
Połeć, I., Hine, P.J., Bonner, M.J., Ward, I.M. and Barton, D.C., 2010. Die drawn wood polymer composites. I. Mechanical properties. Composites Science and Technology, 70(1): 45-52.
-Popov, V.N., 2004. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 43(3): 61-102.
-Prashantha, K., Soulestin, J., Lacrampe, M.F., Claes, M., Dupin, G. and Krawczak, P., 2008. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polymer Letters, 2(10): 735-745.
-Pundhir, N., Zafar, S. and Pathak, H., 2021. Performance evaluation of HDPE/MWCNT and HDPE/kenaf composites. Journal of Thermoplastic Composite Materials, 34(10): 1315-1333.
-Salehi, S., Maghmoomi, F., Sahebian, S., Zebarjad, S.M. and Lazzeri, A., 2021. A study on the effect of carbon nanotube surface modification on mechanical and thermal properties of CNT/HDPE nanocomposite. Journal of Thermoplastic Composite Materials, 34(2): 203-220.
-Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L., 1999. Mechanical properties of carbon nanotubes. Applied Physics A, 69(3): 255-260.
-Sanadi, A.R., Caulfield, D.F. and Jacobson, R.E., 1997. Agro-fiber thermoplastic composites. Paper and composites from agro-based resources. CRC Press, New York, USA
-Weisenberger, M.C., Grulke, E.A., Jacques, D., Rantell, A.T. and Andrewsa, R., 2003. Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. Journal of nanoscience and nanotechnology, 3(6): 535-539.
-Wu, Y., Gu, Z., Chen, M., Zhu, C. and Liao, H., 2017. Effect of functionalization of multi-walled carbon nanotube on mechanical and viscoelastic properties of polysulfide-modified epoxy nanocomposites. High Performance Polymers, 29(2): 151-160.
-Yaghoobi, H. and Fereidoon, A., 2019. Preparation and characterization of short kenaf fiber-based biocomposites reinforced with multi-walled carbon nanotubes. Composites Part B: Engineering, 162: 314-322.
-Yakobson, B.I., Brabec, C.J. and Bernholc, J., 1996. Nanomechanics of carbon tubes: instabilities beyond linear response. Physical review letters, 76(14): 2511-2514.
-Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S., 2000. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical review letters, 84(24): 5552-555.