نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد علوم و صنایع چوب وکاغذ، دانشکده منابع طبیعی،دانشگاه زابل

2 استادیار دانشکده منابع طبیعی، عضو هیئت علمی گروه علوم صنایع چوب وکاعذ انشگاه زابل

چکیده

چکیده
در این مطالعه از شبکه عصبی GMDH براساس الگوریتم ژنتیک برای پیش‌بینی خواص فیزیکی و مکانیکی تخته خرده چوب در مقیاس آزمایشگاهی استفاده‌ شد. به‌منظور تعیین خواص فیزیکی و مکانیکی به‌وسیله شبکه عصبی GMDH، از مشخصات دمای پرس در 4 سطح 170،160،150 و 180 درجه سانتی‌گراد، زمان بسته شدن پرس در 3 سطح 20،10 و 30 ثانیه و رطوبت کیک در 4 سطح 12،10،8 و 14 به‌عنوان داده‌های ورودی و از خواص فیزیکی و مکانیکی به‌عنوان داده خروجی استفاده گردید. کارایی مدل‌ها با استفاده از معیارهای میانگین مربعات خطا (MSE)، ریشه‌ی میانگین مربعات خطا (RMSE)، میانگین قدر مطلق انحراف (MAD) و ضریب تبیین R2)) مورد ارزیابی قرار گرفت. نتایج نشان داد که مقادیر MSE، RMSE وMAD  برای خواصMOR ، IB،TS24h ،TS2h ،WA2h  وWA24h  پایین است و خطاهای به‌دست‌آمده برای مدل  MOEساخته‌شده به روش GMDH بسیار بالا می‌باشد. با توجه به مقادیر به‌دست‌آمده این مدل مناسب برای پیش‌بینی MOE نیست. مقادیر R2 به‌دست‌آمده از مجموعه آزمون و آموزش برای خواصMOR ، IB،MOE ،TS24h ،TS2h ،WA2h  وWA24h  بیشتر از 91/0 درصد است، که این نشان‌دهنده عملکرد بهتر این مدل‌هاست.

کلیدواژه‌ها

موضوعات

 
-Avramidis, S. and Iliadis, L. 2005. Predicting wood thermal conductivity using artificial neural networks.Classification of wood species by neural network analysis of ultrasonic signals. Ultrasonic. 36: 219-222.
-Amanifard, N., Nariman-Zadeh, N., Borji, M., Khalkhali, A. and Habibdoust, A. 2007 Modelling and Pareto Optimization of Heat Transfer and Flow Coefficientsin Microchannels Using GMDH Type Neural Networks and Genetic Algorithms,Energy Conversion and Management. 49: 311-325.
-Atashkari, K., Nariman-Zadeh, N., Golcu, M., Khalkhali, A. and Jamali, A. 2007. Modelling and Multi-Objective optimization of a Va riable Valve-Timing Spark- Ignition Engine Using Polynomial Neural Networks and Evolutionary Algorithms, Energy Conversion and Management. 48( 3) 1029-1041.
-Asociación Eespañol De Normaliación (AENOR), 2001. Tableros derivados de la madera. Determinación del contenido de humedad. Standard UNE-EN 322. Madrid, España.
-Cook, DF., Whittaker, AD. 1992. Neural network models for prediction of process parameters in wood products manufacturing. In: Proceedings of the 1stindustrial engineering research conference. Chicago (IL), May, p. 209– 11.
-Cook, D.F., Ragsdale, C.T., Major R.L. 2000. Combining a neural network with a genetic algorithm for process parameter optimization. Eng Appl Artif Intell 13,391-396.
-Cook, D.E. and Chiu, C. C. 1997. Predicting the Internal Bond Strength of Particleboard, Utilizing a Radial Basis Function Neural Network. Engng Applic.Artif.lnteU. 10(2): 171-177.
-Drake, P.R. and Packianather, M.S. 1998. A decision treeof neural networks for classifying images of wood veneer. Int Journal Adv Manuf Technol, 14: 280-285.
-Esteban, L.G., Fernandez, F.G., Palacios, P., and Rodrigo, B.G. 2010. Use of ANN as a predictive method to determine moisture resistance of particle and fiber boards under cyclic testing conditions. (UNE-EN 321) Wood and Fiber Science, 42(3): 1-11.
-EN 317. 1993. Particleboard and Fiberboards. Determination of Swelling in Thickness after Immersion in Water. European Committee for Standardization, Brussels, Belgium.
-EN 319. 1993. Determination of Tensile Strength Perpendicular to the Plane of the Board. European Committee for Standardization, Brussels, Belgium.
-EN 310. 1993. Wood Based Panels. "Determination of Modulus of Elasticity in Bending and Bending Strength". European Committee for Standardization, Brussels, Belgium.
-Fernandez, G.F., Esteban L.G. DE., Palacios, P., Navarro, N. and Conde, M. 2008. Prediction of standard particleboard mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model. Invest. Agrar.Sist. Rec. For. 17(2): 178-187.
-Fernandez, G.F., Esteban L.G. DE., Palacios, P.  and  Casasus  GA. 2007. Use of an artificial neural network to differentiate the wood of Juniperus cedrusWebb & Bertel and Juniperus. canariensis Guyot. Pan-American IAWA Meeting 2007,San Luis Potosi, México, July 15-20.
-Hiassat, M., Abbod, M. and Mort, N. 2003. Using Genetic Programming to Improve the GMDH in Time Series Prediction, Statistical Data Mining and Knowledge Discovery, Edited by Hamparsum Bozdogan, Chapman and Hall CRC, PP. 257-268.
-Halligan, A.F., and Schniewind, A.P. 1974. Prediction of particleboard mechanical properties at various moisture contents.Wood Science Technology. 8(1): 68-78.
-Ivakhnenko, A.G. 1971. Polynomial Theory of Complex Systems. IEEE Transactions on Systems, Man, and Cybernetics. 364-378.
-Jordan, R., Afeeney, F., Nesbitt, N., Evertsen, J.A.1998. Classification of wood species by neural network, pp: 985.
-Krauss G, Kindangen JI, Depecker P. 1997. Using artificial neural networks to predict interior velocity coefficients. Build Environ. 32(4):295–303.
-Mier R ., Garcia J.L.,  Diez M.R., Fernandez-Golfin J.I. and  Hermosoe E. 2005. Aplicacion de redes neuronales a la clasificacion visual de madera estructural. Comparación con otros métodos de clasificación. IV Congreso Forestal Espanol, 26-30.
-Nariman-zadeh, N., A. Darvizeh, M. and  Gharababaei, H. 2002. Modelling of Explosive Cutting Process of Plates Using GMDHType Neural Network and Singular Value Decomposition Journal of Materials Processing Technology. 128 (1-3): 80- 87.
-Nirdosha, G. and Setunge, S. 2006. Formulation and process modeling of particleboard production using hardwood saw mill wastes using experimental design. Composite Structures. 75: 520–523.
-Suchsland, O., X. Hong. 1989. Model analysis of flakeboard variables. Forest Prod. J. 41(11/12):55-60.
-Yapici, F., Ozcifci, A., Akbulut, T. and  Bayir, R. 2009. Determination of modulus of rupture and modulus of elasticity on flake board with fuzzy logic classifier. Mater. Des. 30: 2269-2273.