نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه شیمی، دانشگاه پیام نور،

2 استادیار، گروه شیمی، دانشگاه پیام نور،

3 دانشجوی دکتری، گروه شیمی، دانشگاه پیام نور

4 استادیار رشته علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی کرج، دانشگاه تهران

چکیده

چکیده
در این مطالعه رفتار نوری نمونه‌های لیگنین یورکمن متیله شده و متیله نشده صنوبر با دو نمونه ترکیب مدل لیگنین فنولی و غیر فنولی دارای اتصالβ-O-4  مقایسه شده است. برای این منظور پس از آغشته ‌‌سازی و انتقال چهار نمونه بر روی زمینه سلولزی خالص (کاغذ واتمن) و پرتو‌دهی در زمان‌های 5، 10، 15 و 20 ساعت با نور فرابنفش و مرئی، تغییرات انجام شده توسط تکنیک ATR – FTIR پیگیری و موردبررسی قرار گرفته است. نتایج نشان داد که پرتودهی، ساختار شیمیایی همه نمونه‌ها را تغییر داده است. لیگنین حساس‌ترین ترکیب نسبت به تخریب نوری است و بر اثر پرتودهی، نوارهای جذبی مشخصه آن در طیف‌ها کاهش می‌یابد. این تغییرات با تشکیل نوار جذبی جدید مربوط به گروه‌های کربونیل که در cm-11735 ظاهر می‌شود، همراه است. در مقایسه با نمونه‌های متیله نشده، سرعت تخریب و تجزیه لیگنین در فرم‌های متیله شده نسبتاً کمتر است. به بیان دیگر متیله کردن گروه‌های هیدروکسیل فنولی، تغییرات شیمیایی ناشی از پرتودهی را کاهش می‌دهد.

کلیدواژه‌ها

 
 
-Azadfallah, M., Mirshokraei, S.A., Latibari, A.J. and Parsapajouh, D., 2008. Analysis of Photodegraded Lignin on Cellulose Matrix by Means of FTIR Spectroscopy and High Pressure Size Exclusion Chromatography. Iranian Polymer Journal, 17 (1): 73-80.
-Colom, X. and Carrill, F., 2005. Comparative study of wood samples of the northern area of Catalonia by FT-IR. J. Wood Chem. Technol., 25 (1–2): 1–11.
-Crestini, C. and Dauria, M., 1996. Photodegradation of lignin: the role of singlet oxygen. J Photochem Photobiol A: Chem, 101: 69-73.
-Crestini, C. and Dauria, M., 1997. Singlet oxygen in the photodegradation of lignin models. Tetrahedron, 53,7877-88.
 -Da Luz, B.R., 2006. Attenuated total reflectance spectroscopy of plant leaves: A tool for ecological and botanical studies. New Phytologist, 172(2): 305–318.
-Dence, C.W., 1992. The determination of lignin: 33–62. In: Lin, S.Y. and Dence, C.W., (Eds.). Methods in Lignin Chemistry. Springer-Verlag.
-Emandi, A., Budrugeac, P. and Emandi, I., 2010. The assessment of the decayed lime wood polymeric components by TG and FT-IR parameters correlation. International Journal of Conservation Science, 1(4): 211-218.
-Hon, D.N.S., 1991. Photochemistry of wood: 525-55. In: Hon, D.N.S., Shiraishi, N., (Eds.). Wood and cellulosic chemistry, Marcel Decker.
-Hon, D.N.S., 2000. Weathering and photochemistry of wood: 512–546. In: Hon, D.N.S. and Shiraishi, N. (Eds.), Wood and Cellulosic Chemistry, 2nd Edition, Marcel Dekker, New York.
-Huang, Z., Cooper, P., Wang, X. D., Wang, X. M., Zhang, Y. L. and Casilla, R., 2010. Effects of conditioning exposure on the pH distribution near adhesive wood bond lines. Wood and Fiber Science, 42(2): 219–228.
-Kaparaju, P. and Felby, C., 2010. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresource Technology, 101(9): 3175–3181.
-Kirov, K. R. and Assender, H. E., 2005. Quantitative ATR-IR analysis of anisotropic polymer films: Surface structure of commercial PET. Macromolecules, 38(22): 9258–9265.
-Lammers, K., Arbuckle-Keil, G. and Dighton, J., 2009. FT-IR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning. Soil Biology & Biochemistry, 41: 340–347.
-Lanzalunga , O. and Bietti, M., 2000. Photo- and radiation chemical induced degradation of lignin model compounds. Journal of Photochemistry and Photobiology, B(56): 85–108.
-Mirshokraie, S.A., Abdulkhani, A. and Karimi, A., 2008. Chemical structure elucidation of milled wood lignin and cellulytic lignin from Poplar. Iranian Journal of Wood and Paper Science Research, 23(2): 102-122.
-Mitsui, K., 2004. Changes in the properties of light-irradiated wood with heat treatment. Part 2. Effect of light irradiation time and wavelength. Holz Roh Werkst, 62: 23-30.
-Mitsui, K., Murata, A. and Tolvaj, L., 2004. Changes in the properties of lightirradiated wood with heat treatment. Part 3. Monitoring by DRIFT spectroscopy. Holz Roh Werkst; 62:164-8.
-Mostaghni, F., Teimoory, A. and Mirshokraei, S.A., 2013. Synthesis, spectroscopic characterization and DFT calculations on of β-O-4 type lignin model compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 110: 430–436.
-Muller, U., Ratzsch, M., Schwanninger, M., Steinera, M. and Zobla, H., 2003. Yellowing and IR-changes of spruce wood as result of UV-irradiation. Journal of Photochemistry and Photobiology B: Biology, 69: 97–105.
-Pandey, K.K., 2005. Study of the effect of photoirradiation on the surface chemistry of wood. Polym. Degrad. Stab., 90: 9–20.
-Paulsson, M. and Ragauskas, A.J., 1998. Chemical Modification of Lignin-Rich Paper Part 10' The Light-Induced Yellowing of Untreated and Acety!ated High-Yield Pulps Studied by Solid-State UVNIS Diffuse Reflectance Spectroscopy. Nordic Pulp and Paper Research Journal, 13(3): 198-205. 
-Popescu, C. M., Popescu, M.C., Singurel, G., Vasille, C., Argyropoulos, D.S. and Willfor, S., 2007. Spectral characterization of Eucalyptus, wood. Applied Spectroscopy, 61(11): 1168–1177.
-Sahin, H.T., 2007. RF-CF4 plasma surface modification of paper: Chemical evaluation of two sidedness with XPS/ATR-FTIR, Applied Surface Science, 253: 4367–4373.
-Schwanninger, M., Rodrigues, J.C., Perira, H. and Hinterstoisser, B., 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36: 23–40.
-Svenson, D.R., Chang, H.m., Jameel H. and Kadla, J.F., 2005. The role of non-phenolic lignin in chlorate-forming reactions during chlorine dioxide bleaching of softwood kraft pulp. Holzforschung, 59: 110–115.
-TAPPI Test Methods 1998–1999, T 272 sp-97, TAPPI Press, Atlanta, 1998.
-Xavier, R.J. and Gobinath, E., 2012. FT-IR, FT-Raman, ab initio and DFT studies, HOMO–LUMO and NBO analysis of 3-amino-5-mercapto-1,2,4-triazole. Spectrochimica Acta Part A, 86: 242– 251.